K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2023

a) 

loading...  

b) Phương trình hoành độ giao điểm của hai đường thẳng đã cho:

-3x + 5 = 2x

⇔ 2x + 3x = 5

⇔ 5x = 5

⇔ x = 1 ⇒ y = 2.1 = 2

Vậy M(1; 2)

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}3x^2-2x-1=0\\y=3x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x^2-3x+x-1=0\\y=3x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(3x+1\right)=0\\y=3x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(1;3\right);\left(-\dfrac{1}{3};\dfrac{1}{3}\right)\right\}\)

16 tháng 3 2023

 

b: PTHĐGĐ là:

x^2+3x-4=0

=>(x+4)(x-1)=0

=>x=-4 hoặc x=1

=>y=16 hoặc y=1

18 tháng 11 2023

a) loading...  

b) *) Thay x = 0 vào (d) ta có:

y = 1/2 . 0 - 2 = -2

⇒ M(0; -2)

Thay x = 0 vào (d) ta có:

y = 1/4 . 0 + 2 = 2

⇒ N(0; 2)

Phương trình hoành độ giao điểm của (d) và (d)

1/2 x - 2 = 1/4 x + 2

⇔ 1/2 x - 1/4 x = 2 + 2

⇔ 1/4 x = 4

⇔ x = 4 : (1/4)

⇔ x = 16

Thay x = 16 vào (d) ta có:

y = 1/2 . 16 - 2 = 6

⇒ P(16; 6)

Bạn tham khảo hình :

undefinedundefinedundefined

30 tháng 5 2021

a)Tự vẽ

b) Xét pt hoành độ gđ của (P) và (d) có:

\(\dfrac{3}{2}x^2=x+\dfrac{1}{2}\)

\(\Leftrightarrow3x^2-2x-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\Rightarrow y=\dfrac{3}{2}.\left(-\dfrac{1}{3}\right)^2=\dfrac{1}{6}\\x=1\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)

Vậy gđ của (d) và (P) là \(\left(-\dfrac{1}{3};\dfrac{1}{6}\right),\left(1;\dfrac{3}{2}\right)\)

c) Gọi đt cần tìm có dạng (d') \(y=ax+b\) (a2+b2>0)

Gọi A(-4;y1) và B(2;y2) là hai giao điểm của (P) và (d')

\(A;B\in\left(P\right)\Rightarrow\left\{{}\begin{matrix}y_1=24\\y_2=6\end{matrix}\right.\) 

\(\Rightarrow A\left(-4;24\right),B\left(2;6\right)\) \(\in\left(d'\right)\)

\(\Rightarrow\left\{{}\begin{matrix}24=-4a+b\\6=2a+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=12\end{matrix}\right.\) (thỏa)

Vậy (d'): y=-3x+12

21 tháng 11 2021

b. PTHDGD: \(2x=x+1\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow A\left(1;2\right)\)

Vậy tọa độ giao điểm 2 đt là \(A\left(1;2\right)\)

21 tháng 11 2021

vậy còn phần A với vẽ hình thì làm sao vậy ạ

30 tháng 4 2023

a, (d) cắt trục hoành tại A(xA;0) và trục tung B(0;xB)

Vì A thuộc (d) nên \(0=-2x_A+4\Leftrightarrow x_A=2 \Rightarrow A(2;0)\)

Vì B thuộc (d) nên \(y_B=-2.0+4=4\Rightarrow B(0;4)\)

Vậy A(2;0) và B(0;4) là hai điểm cần tìm.

b, Gọi C(xc;yc) là điểm có hoành độ bằng tung độ

⇒ x= y= a. Vì C thuộc (d) nên \(a=-2a+4\Leftrightarrow a=\dfrac{4}{3}\)

⇒ \(C(\dfrac{4}{3};\dfrac{4}{3})\) là điểm cần tìm.

22 tháng 3 2023

\(a,\) Tự vẽ nhaa

\(b,\) Gọi \(A\left(x_A;y_A\right);B\left(x_B;y_B\right)\) là tọa độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\)

Ta có :  \(\left(P\right)=\left(d\right)\)

Suy ra :

\(2x^2=-3x+1\)

\(\Leftrightarrow2x^2+3x-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{4}\\x_2=\dfrac{-3-\sqrt{17}}{4}\end{matrix}\right.\)

Thay \(x_1=\dfrac{-3+\sqrt{17}}{4}\) vào \(\left(P\right):y=2x^2\Rightarrow y=2.\left(\dfrac{-3+\sqrt{17}}{4}\right)=\dfrac{-3+\sqrt{17}}{2}\)

Thay \(x_2=\dfrac{-3-\sqrt{17}}{4}\) vào \(\left(d\right):y=-3x+1\Rightarrow y=-3.\left(\dfrac{-3-\sqrt{17}}{4}\right)+1=\dfrac{13+3\sqrt{17}}{4}\)

Vậy toa độ giao điểm của 2 đồ thị hàm số là 

\(A\left(\dfrac{-3+\sqrt{17}}{4};\dfrac{-3+\sqrt{17}}{2}\right)\) và \(B\left(\dfrac{-3-\sqrt{17}}{4};\dfrac{13+3\sqrt{17}}{4}\right)\)