K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

\(a,=2x^2-\dfrac{3}{2}y+3x\)

\(b,\)bt để chia hết cho x+2 là:\(2x^3+x^2-x+10\)

\(\Rightarrow m=12\)

c) Ta có: \(P=x^3+y^3+6xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)

\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)

\(=2^3=8\)

21 tháng 10 2015

câu c (x+3)(x^2-3x+9)-(54+x^3)=x^3+27-54-x^3

=27

20 tháng 8 2021

a) \(3xy-6xy^2=3xy\left(1-2y\right)\)

b) \(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)

c) \(x^3-x^2+2\)

d) \(x^2+4x+4-y^2=\left(x^2+4x+4\right)-y^2=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)

e) \(x^3+4x^2+4x=x\left(x^2+4x+4\right)=x\left(x+2\right)^2\)

f) \(x^2+2x+1-9y^2=\left(x+1\right)^2-\left(3y\right)^2=\left(x-3y+1\right)\left(x+3y+1\right)\)

g) \(6x^2-12x=6x\left(x-2\right)\)

h) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

i) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)

20 tháng 8 2021

k) \(2x^3+2x^2y-4xy^2=2x\left(x^2+xy-2y^2\right)\)

l) \(x^3-7x^2+9x+3x^2-21x+27=x\left(x^2-7x+9\right)+3\left(x^2-7x+9\right)=\left(x+3\right)\left(x^2-7x+9\right)\)

11 tháng 10 2017

Bài 3 :

a )

\(4x^2-4x=0\)

\(\Leftrightarrow4x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy \(x=0\) or \(x=1\)

b )

2 -1 1 a
2 2 3 7 15a

11 tháng 10 2017

1.

a.\(4x^2\left(5x^3-3x+1\right)\)

\(=20x^5-12x^3+4x^2\)

b.\(\left(5x^2-4x\right)\left(x-2\right)\)

\(=5x^3-10x^2-4x^2+8x\)

\(=5x^3-14x^2+8x\)

c.\(\left(x^2-2xy+y^2\right)\left(x-y\right)\)

\(=\left(x-y\right)^2\left(x-y\right)\)

\(=\left(x-y\right)^3\)

2.

a.Bạn xem lại đề câu này nhé!

b.\(x^2-y^2-3x-3y\)

\(=\left(x^2-y^2\right)+\left(-3x-3y\right)\)

\(=\left(x+y\right)\left(x-y\right)-3\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-3\right)\)

3.

a.\(4x^2-4x=0\)

\(4x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy x=0 hoặc x=1.