Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: A= (x-1)^2 +(x+1)(3-x)
<=>A= x^2-2x+1 +3x-x^2-x+3
<=>A=4
Vậy gt của A ko phụ thuộc vào biến
Bài 5 :
a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)
=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)
=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
=> \(36x+3=0\)
=> \(x=-\frac{1}{12}\)
Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)
b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)
=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)
=> \(35x-5+60x-96+6x=0\)
=> \(101x-101=0\)
=> \(x=1\)
Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)
c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)
=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)
=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)
=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)
=> \(-64x+123=0\)
=> \(x=\frac{123}{64}\)
Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)
a, ĐKXĐ: x≠±3
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\dfrac{-1}{x^2}\)
b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:
\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4
c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)
Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)
a) Ta có: \(C=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\left(\dfrac{1+x^3}{1+x}-x\right)\right]\)
\(=\dfrac{x\left(x^2-1\right)^2}{x^2+1}:\left[\left(\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}+x\right)\left(\dfrac{\left(1+x\right)\left(1-x+x^2\right)}{\left(1+x\right)}-x\right)\right]\)
\(=\dfrac{x\left(x^2-1\right)^2}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)
\(=\dfrac{x\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x^2+1\right)}\cdot\dfrac{1}{\left(x+1\right)^2\cdot\left(x-1\right)^2}\)
\(=\dfrac{x}{x^2+1}\)
b) Thay \(x=-\dfrac{3}{2}\) vào C, ta được:
\(C=\dfrac{-3}{2}:\left(\dfrac{9}{4}+1\right)=\dfrac{-3}{2}:\dfrac{13}{4}=\dfrac{-3}{2}\cdot\dfrac{4}{13}=\dfrac{-6}{13}\)
c) Ta có: \(C=\dfrac{1}{2}\)
nên \(\dfrac{x}{x^2+1}=\dfrac{1}{2}\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)(Loại)
\(A=\left(x-1\right)^4-x^2\left(x^2+6\right)+4x\left(x^2+1\right)\)
\(A=x^4-4x^3+6x^2-4x+1-x^4-6x^2+4x^3+4x\)
\(A=\left(x^4-x^4\right)+\left(-4x^3+4x^3\right)+\left(6x^2-6x^2\right)+\left(-4x+4x\right)+1\)
\(A=1\)
Vậy biểu thức không phụ thuộc vào x
a, ĐKXĐ: x≠±2
A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)
A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)
b, |x|=\(\dfrac{1}{2}\)
TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)
TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)
Thay \(\dfrac{1}{2}\), \(\dfrac{-1}{2}\) vào A ta có:
\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)
\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)
c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)2 < 0
⇔ {x-2>0 ⇔ {x>2
[ [
{x+2<0 {x<2
⇔ {x-2<0 ⇔ {x<2
[ [
{x+2>0 {x>2
⇔ x<2
Vậy x<2 (trừ -2)