K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

Ta có: \(31^{111}\)\(< 32^{111}\) và \(17^{139}>16^{139}\)
Ta lại có: \(31^{111}=\left(2^5\right)^{111}=2^{555}\)
\(16^{139}=\left(2^4\right)^{139}=2^{556}\)
Vì \(2^{555}< 2^{556}\) nên \(17^{139}>2^{556}>31^{111}\)
⇒ \(17^{139}>31^{111}\)
Vậy \(17^{139}>31^{111}\)

22 tháng 7 2021

b,
Gọi số cần tìm là: x (x ≠ 0; x∈ N)
Ta có:
x: 5 dư 3 ⇒ x+3 chia hết cho 5 ⇒ 7x+21 chia hết cho 35
x: 7 dư 4⇒ x+4 chia hết cho 7⇒ 5x+20 chia hết cho 35
⇒ (7x+21) - (5x+20) chia hết cho 35
⇒7x+21- 5x-20 chia hết cho 35
⇒ (7x- 5x)+(21-20) chia hết cho 35
⇒ 2x+1 chia hết cho 35
⇒ 2x+1 ∈ { 5; -5; 7; -7; 35; -35 }
⇒ 2x ∈ { 4; -6; 6; -8; 34; -36 }
⇒ x ∈ { 2; -3; 3; -4; 17; -18 }
Vậy x= 2

2 tháng 4 2018

a) ta có :

\(31^{111}< 32^{111}=\left(2^5\right)^{111}=2^{555}\)

\(17^{139}>16^{139}=\left(2^4\right)^{139}=2^{556}\)

Vì \(2^{555}< 2^{556}\)

Nên \(31^{111}< 17^{139}\)

vậy \(31^{111}< 17^{139}\)

b) Gọi số cần tìm là : x ( \(x\ne0;x\inℕ\))

Ta có :

x chia 5 dư 3 \(\Rightarrow x+3⋮5\)\(\Rightarrow7x+21⋮35\)

x chia 7 dư 4 \(\Rightarrow x+4⋮7\)\(\Rightarrow5x+20⋮35\)

\(\Rightarrow\left(7x+21\right)-\left(5x+20\right)⋮35\)

\(\Rightarrow7x+21-5x-20⋮35\)

\(\Rightarrow\left(7x-5x\right)+\left(21-20\right)⋮35\)

\(\Rightarrow2x+1⋮35\)

\(\Rightarrow2x+1\in\left\{5;-5;7;-7;35;-35\right\}\)

\(\Rightarrow2x\in\left\{4;-6;6;-8;34;-36\right\}\)

\(\Rightarrow x\in\left\{2;-3;3;-4;17;-18\right\}\)

Vậy \(x=2\)

12 tháng 4 2016

a) Ta thấy: 31111 < 34111 = (17.2)111 =17111.2111        (1)

                 17139 = 17111.1728 > 17111.1628 = 17111.(24)28 = 17111. 2112 > 17111. 2111   (2)

Từ (1) và (2) => 31111< 17139

b) Gọi số tự nhiên cần tìm là A

Gọi B và C lần lượt là thương hụt của các phép chia A : 5 và A : 7 (A; B; C  $\in $ N)

Ta có: A = 5 B + 3 => A x 14 = 70B + 42 (1)

A = 7C + 4 => A x 15 = 105 C + 60 (2)

Trừ theo các vế của (2) cho (1) ta được:

A =  105C - 70 B + 18 = 35. (3C - 2B) + 18

Dễ thấy STN A nhỏ nhất chỉ có thể là 18 (Khi 3C - 2B = 0)

Vậy A là 18

Thử lại 18 : 5 = 3 dư 3; 18 : 7 = 2 dư 4 (Đúng)

b.gọi số cần tim là a(a thuoc N*) vì a:5 dư 3 nên a+7 chia hết cho5 a:7 dư 4 nên a+7chia hết cho 7 Ta có BCNN(5&7)=35 suy ra a=35-7=28 vậy số cần tìm là 28
21 tháng 1 2019

gọi số đó là a suy ra a-3 chia hết cho 5 và a-4 chia hết cho 7

Từ a-3 chia hết cho 5 suy ra a-18 chia hết cho 5

từ a-4 chia hết cho 7 suy ra a-18 chia hết cho 7

suy ra a-18 thuộc BC(5;7).Mà a nhỏ nhất suy ra a-18 nhỏ nhất suy ra a-18 là BCNN 

suy ra a-18=0 suy ra a=18

15 tháng 8 2020

a)

CM chiều xuôi.

Có:     \(2x+3y⋮17.\)    CMR:     \(9x+5y⋮17\)

\(\Rightarrow9\left(2x+3y\right)⋮17\)

\(\Rightarrow18x+27y⋮17\)

\(\Rightarrow18x+10y+17y⋮17\)

MÀ    \(17y⋮17\)

\(\Rightarrow2\left(9x+5y\right)⋮17\)

\(\Rightarrow9x+5y⋮17\left(đpcm\right)\)     do 2 ko chia hết cho 17

CM chiều đảo: 

Có:    \(9x+5y⋮17\)     . CMR:     \(2x+3y⋮17\)

=>   \(18x+10y⋮17\)

=>   \(18x+27y-17y⋮17\)

=>   \(18x+27y⋮17\)    do     \(17y⋮17\)

=>    \(2x+3y⋮17\)     do 9 ko chia hết cho 17.

VẬY QUA CM ĐẢO VÀ XUÔI TA CÓ ĐPCM.

**** ĐỀ BÀI THIẾU NGHIÊM TRỌNG LÀ    \(x;y\inℤ\)     nhé !!!!

a) Ta phải chứng minh: 2.x + 3.y chia hết cho 17 thì 9.x + 5.y chia hết cho 17

Ta có 4.(2x + 3y) + (9x+ 5y) = 17x + 17y chia hết cho 17

Do vậy : 2x + 3y chia hết cho 17; 4.(2x + 3y) chia hết cho 17; 9x + 5y chia hết cho 17

Ngược lại : Ta có 4.(2x + 3y) chia hết cho 17 mà (4;17) = 1 => 2x + 3y chia hết cho 17. 

b) Gọi số cần tìm là a. Theo đề bài ra ta có a:9 dư 5 => 2a - 1 chia hết cho 9

a :7 dư 4 => 2a - 1 chia hết cho 7; a: 5 dư 3 => 2a - 1 chia hết cho 5

Vì 2a - 1 chia hết cho 9,7,5 và a nhỏ nhất => 2a - 1 thuộc BCNN(9;5;7)

9 = 32; 5 = 5; 7 = 7 => BCNN(9;5;7) = 32.5.7 = 315. Ta có: 2a - 1 = 135 

2a = 315 + 1 => 2a = 316 => a = 316 : 2 = 158

=> Số thỏa mãn yêu cầu đề bài mà ta cần tìm là 158. 

a) Ta thấy: 31111 < 34111 = (17.2)111 =17111.2111        (1)

                 17139 = 17111.1728 > 17111.1628 = 17111.(24)28 = 17111. 2112 > 17111. 2111   (2)

Từ (1) và (2) => 31111< 17139

b) Gọi số tự nhiên cần tìm là A

Gọi B và C lần lượt là thương hụt của các phép chia A : 5 và A : 7 (A; B; C   N)

Ta có: A = 5 B + 3 => A x 14 = 70B + 42 (1)

A = 7C + 4 => A x 15 = 105 C + 60 (2)

Trừ theo các vế của (2) cho (1) ta được:

A =  105C - 70 B + 18 = 35. (3C - 2B) + 18

Dễ thấy STN A nhỏ nhất chỉ có thể là 18 (Khi 3C - 2B = 0)

Vậy A là 18

Thử lại 18 : 5 = 3 dư 3; 18 : 7 = 2 dư 4 (Đúng)

a) Ta có: \(31^{111}< 34^{111}=17^{111}\cdot2^{111}\)

\(17^{139}=17^{111}\cdot17^{28}>17^{111}\cdot16^{28}=17^{111}\cdot2^{112}>17^{111}\cdot2^{111}\)

Do đó: \(31^{111}< 17^{139}\)

 

6 tháng 3 2018

Kết quả : 119

Mik hk trình bày cách lm đâu nha

Học tốt

30 tháng 1 2016

lì xì tết thì phải vừa nhiều vừa khó chứ

duyệt đi

30 tháng 1 2016

Bạn ơi, bạn hỏi từng câu thôi tớ mói trả lời đc chứ

16 tháng 12 2021

a=203

27 tháng 11 2022

a) = 203 

b) ko bíc

 

27 tháng 12 2016

Gọi số cần tìm là a

=>a+2 thuộc BC(4,5,6)

Sau đó, khi bn tìm đc a+2 thì bn tìm a Xét các số trong tập hợp đó số nào chia hết cho 7 thì lấy