Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
t1=\(\frac{S_1}{v_1}=\frac{S}{2v_1}\)
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}\)
vận tốc trung bình của nhười đó là:
\(v_{tb}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{2v_1}+\frac{S}{2v_2}}=\frac{1}{\frac{1}{2v_1}+\frac{1}{2v_2}}=\frac{1}{\frac{v_2+v_1}{2v_1v_2}}=\frac{2v_1v_2}{v_2+v_1}\)
lấy vtb-trung bình cộng 2 v ta có:
\(\frac{2v_1v_2}{v_1+v_2}-\frac{v_1+v_2}{2}=\frac{4v_1v_2-v_1^2-2v_1v_2-v_2^2}{2\left(v_1+v_2\right)}=\frac{-\left(v_1^2-2v_1v_2+v_2^2\right)}{2\left(v_1+v_2\right)}\)
\(=\frac{-\left(v_1-v_2\right)^2}{2\left(v_1+v_2\right)}\)
mà (v1-v2)2>0 nên
-(v1-v2)2<0 và 2*(v2+v1)>0 nên ta suy ra
vận tốc trung bình này ko bao giờ lớn hơn trung bình cộng của hai vận tốc v1 và v2
ta có:
t1=S1v1=S2v1S1v1=S2v1
t2=S2v2=S2v2t2=S2v2=S2v2
vận tốc trung bình của nhười đó là:
vtb=St1+t2=SS2v1+S2v2=112v1+12v2=1v2+v12v1v2=2v1v2v2+v1vtb=St1+t2=SS2v1+S2v2=112v1+12v2=1v2+v12v1v2=2v1v2v2+v1
lấy vtb-trung bình cộng 2 v ta có:
2v1v2v1+v2−v1+v22=4v1v2−v21−2v1v2−v222(v1+v2)=−(v21−2v1v2+v22)2(v1+v2)2v1v2v1+v2−v1+v22=4v1v2−v12−2v1v2−v222(v1+v2)=−(v12−2v1v2+v22)2(v1+v2)
=−(v1−v2)22(v1+v2)=−(v1−v2)22(v1+v2)
mà (v1-v2)2>0 nên
-(v1-v2)2<0 và 2*(v2+v1)>0 nên ta suy ra
vận tốc trung bình này ko bao giờ lớn hơn trung bình cộng của hai vận tốc v1 và v2
a) Thời gian vật đi hết quãng đường trên:
\(t_{tổng}=t_1+t_2=\dfrac{S_1}{v_1}+\dfrac{S_2}{v_2}=\dfrac{520:2}{5}+\dfrac{520:2}{7}=\dfrac{624}{7}\left(s\right)\)
b) Thời gian vật đi quãng đường T1 và quãng đường T2:
\(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{520:2}{5}=52\left(s\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{520:2}{7}=\dfrac{260}{7}\left(\dfrac{m}{s}\right)\end{matrix}\right.\)
Vận tốc trung bình trên cả quãng đường:
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{520}{52+\dfrac{260}{7}}=\dfrac{35}{6}\left(\dfrac{m}{s}\right)\)
\(=>vtb=\dfrac{S}{\dfrac{\dfrac{1}{2}S}{v1}+\dfrac{\dfrac{1}{2}S}{v2}}=\dfrac{S}{\dfrac{S}{72}+\dfrac{S}{2v2}}=24\)
\(=>\dfrac{S}{\dfrac{S\left(2v2+72\right)}{144v2}}=24=>\dfrac{144v2}{2v2+72}=24=>v2=18km/h\)
Gọi s là độ dài nửa quãng đường. Ta có thời gian đi nửa quãng đường đầu là:
\(t_1=\dfrac{s}{v_1}\)
Gọi thời gian ô tô đi nửa phần còn lại là \(t_2\) và \(t_3\) và \(t_2=t_3\)
Thời gian ô tô đi được trong mỗi đoạn này là:
\(s_2=v_2t_2\)
\(s_3=v_3t_3\)
Mà: \(t_2=t_3=\dfrac{s}{v_2+v_3}\)
Vận tốc \(v_3\) là:
\(v_{tb}=\dfrac{2v_1\left(v_2+v_3\right)}{v_2+v_3+2v_1}\) hay \(40=\dfrac{2\cdot30\cdot\left(45+v_3\right)}{45+v_3+2\cdot30}\)
\(\Leftrightarrow40=\dfrac{60\left(45+v_3\right)}{105+v_3}\)
\(\Leftrightarrow40\left(105+v_3\right)=60\left(45+v_3\right)\)
\(\Leftrightarrow2\left(105+v_3\right)=3\left(45+v_3\right)\)
\(\Leftrightarrow210+2v_3=135+3v_3\)
\(\Leftrightarrow3v_3-2v_3=210-135\)
\(\Leftrightarrow v_3=75\left(km/h\right)\)
a,
Ta có:
\(t_1=\dfrac{S_1}{v_1}=\dfrac{S}{2v_1}\)
\(t_2=\dfrac{S_2}{v_2}=\dfrac{S}{2v_2}\)
Vân tốc trung bình của người đó là:
\(v_{tb}=\dfrac{S}{t_1+t_2}\dfrac{S}{\dfrac{S}{2v_1}+\dfrac{S}{2v_2}}=\dfrac{1}{\dfrac{1}{2v_1}+\dfrac{1}{2v_2}}=\dfrac{1}{\dfrac{v_2+v_1}{2v_1v_2}}\)
Lấy vtb trừ trung bình cộng 2v, ta có:
\(\dfrac{2v_1v_2}{v_2+v_1}-\dfrac{v_1+v_2}{2}=\dfrac{4v_1v_2-v^2_1-2v_1v_2-v^2_2}{2\left(v_1+v_2\right)}=\dfrac{-\left(v^2_1-2v_1v_2+v^2_1\right)}{2\left(v_1+v_2\right)}=\dfrac{-\left(v_1-v_2\right)^2}{2\left(v_1+v_2\right)}\)
mà \((v_1-v_2)^2\) > 0, nên:
\(-(v_1-v_2)^2 < 0 \) và \( 2(v_2+v_1)>0\) nên ta suy ra:
Vận tốc trung bình này không bao giờ lớn hơn trung bình cộng của hai vận tốc \(v_1\) và \(v_2\)
b, tương tự
hm, hỏi mấy bạn trên bảng xếp hạng môn lý thử ik, mk bó tay gòi @Ngô Thị Thu Trang