K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2023

a) Xét tam giác ABC, áp dụng định lí tổng 3 góc trong tam giác, ta có:

\(\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \\ \Rightarrow \widehat {ABC} = 180^\circ  - (\widehat {BAC} + \widehat {ACB}) = 180^\circ  - (60^\circ  + 70^\circ ) = 50^\circ \end{array}\)

Bước 1: Vẽ AB = 6 cm

Bước 2:  Vẽ \(\widehat {BAB'} = 60^\circ \)bằng cách:

Chọn công cụ Góc, nháy chuột lần lượt vào các điểm B, A ( theo chiều ngược kim đồng hồ) nhập số đo góc 60

Bước 3: Vẽ \(\widehat {ABA'} = 50^\circ \) bằng cách:

Chọn công cụ Góc, nháy chuột lần lượt vào các điểm A,B ( theo chiều kim đồng hồ) nhập số đo góc 50

Bước 4: Vẽ điểm C là giao điểm của AB’ và BA’

b)

Nháy chuột vào Hồ sơ. Chọn xuất bản. Chọn hiển thị đồ thị dạng hình rồi lưu ảnh dạng png

18 tháng 9 2023

a) Bước 1: Vẽ đoạn thẳng AB = 4 cm

Bước 2: Vẽ đường thẳng qua A và vuông góc với AB bằng cách

Chọn công cụ Đường vuông góc, chọn đường vuông góc, nháy chuột vào điểm A và đoạn AB

Bước 3: Vẽ đoạn AC = 3 cm

Bước 4: Vẽ đoạn thẳng BC

Nháy chuột vào Hồ sơ. Chọn xuất bản. Chọn hiển thị đồ thị dạng hình rồi lưu ảnh dạng png

b) Bên trái màn hình hiển thị độ dài đoạn thẳng BC = 5 cm

18 tháng 9 2023

Xét hai tam giác ABC và DEF có:

\(\begin{array}{l}\widehat {ABC} = \widehat {DEF} (= {70^\circ })\\AB = DE\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)

\( \Rightarrow \Delta ABC{\rm{  = }}\Delta DEF\)(g.c.g)

\( \Rightarrow DF = AC\)( 2 cạnh tương ứng)

Mà AC = 6 cm

\( \Rightarrow DF = 6cm\)

18 tháng 9 2023

Xét hai tam giác ABC và DEF có:

\(\begin{array}{l}AB = DE\\AC = DF\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)

\(\Rightarrow \Delta ABC = \Delta DEF\)(c.g.c)

Do đó:

\(BC=EF = 6cm\) ( 2 cạnh tương ứng)

\( \widehat {ABC} =\widehat {DEF}= {45^o}\) (2 góc tương ứng)

\(\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o}\\ \Rightarrow {60^o} + {45^o} + \widehat {ACB} = {180^o}\\ \Rightarrow \widehat {ACB} = {75^o}\end{array}\)

\( \Rightarrow \widehat {EFD} = \widehat {ACB} = {75^o}\)

17 tháng 9 2023

Tổng ba góc trong một tam giác bằng 180°. Vậy trong tam giác A’B’C’ có \(\widehat {C'} = 180^\circ  - 70^\circ  - 60^\circ  = 50^\circ \).

Xét hai tam giác ABC và A’B’C’ có:

     \(\widehat B = \widehat {B'} = 60^\circ ;\)

     BC = B’C’ ( = 3 cm)

     \(\widehat C = \widehat {C'} = 50^\circ \)

Vậy \(\Delta ABC = \Delta A'B'C'\)(g.c.g) 

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Vì \(\Delta ABC = \Delta DEF\) nên BC = EF ( 2 cạnh tương ứng); \(\widehat A = \widehat {EDF}\) ( 2 góc tương ứng)

Mà BC = 4 cm nên EF = 4 cm

Trong tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) ( định lí tổng ba góc trong một tam giác)

\(\begin{array}{l} \Rightarrow \widehat A + 40^\circ  + 60^\circ  = 180^\circ \\ \Rightarrow \widehat A = 180^\circ  - 40^\circ  - 60^\circ  = 80^\circ \end{array}\)

Mà \(\widehat A = \widehat {EDF}\) nên \(\widehat {EDF} = 80^\circ \)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

BC = B’C’ = 4 (đường chéo của 4 ô vuông).

Tam giác ABC và tam giác A’B’C’ có: BC = B’C’, AB = A’B’, \(\widehat B = \widehat {B'}\).

Vậy \(\Delta ABC = \Delta A'B'C'\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Ta có:

\(\widehat {AMB} + \widehat {AMC} = {180^o}\)( 2 góc kề bù)

\(\begin{array}{l} \Rightarrow \widehat {AMB} + {80^o} = {180^o}\\ \Rightarrow \widehat {AMB} = {100^o}\end{array}\)

Áp dụng định lí tổng ba góc trong một tam giác:

+) Trong tam giác AMB có:

\(\begin{array}{l}\widehat {ABC} + \widehat {MAB} + \widehat {AMB} = {180^O}\\ \Rightarrow \widehat {ABC} + {20^o} + {100^o} = {180^O}\\ \Rightarrow \widehat {ABC} = {60^o}\end{array}\)

+) Trong tam giác ABC có:
\(\begin{array}{l}\widehat {BAC} + \widehat {ACB} + \widehat {CBA} = {180^o}\\ \Rightarrow \widehat {BAC} + {60^o} + {60^o} = {180^o}\\ \Rightarrow \widehat {BAC} = {60^o}\end{array}\)

17 tháng 9 2023

a) I là giao điểm của ba đường phân giác tại ba góc A, B, C nên:

     \(\widehat {IAB} = \widehat {IAC};\widehat {IBA} = \widehat {IBC};\widehat {ICB} = \widehat {ICA}\).

Tổng ba góc trong một tam giác bằng 180° nên:

     \(\begin{array}{l}\widehat {BAC} + \widehat {ACB} + \widehat {CBA} = 180^\circ \\\widehat {IAB} + \widehat {IAC} + \widehat {IBA} + \widehat {IBC} + \widehat {ICB} + \widehat {ICA} = 180^\circ \\2\widehat {IAB} + 2\widehat {IBC} + 2\widehat {ICA} = 180^\circ \end{array}\)

Vậy \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \).

b) Tổng ba góc trong một tam giác bằng 180°. Xét tam giác BIC:

\(\begin{array}{l}\widehat {BIC} + \widehat {IBC} + \widehat {ICB} = 180^\circ \\\widehat {BIC} = 180^\circ  - (\widehat {IBC} + \widehat {ICB})\end{array}\).

Mà  \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \)→ \(\widehat {IBC} + \widehat {ICA} = 90^\circ  - \widehat {IAB}\).

Vậy: \(\begin{array}{l}\widehat {BIC} = 180^\circ  - (\widehat {IBC} + \widehat {ICB})\\\widehat {BIC} = 180^\circ  - (90^\circ  - \widehat {IAB})\\\widehat {BIC} = 90^\circ  + \widehat {IAB}\end{array}\)

Mà \(\widehat {IAB} = \dfrac{1}{2}\widehat {BAC}\)(IA là phân giác của góc BAC).

Vậy \(\widehat {BIC} = 90^\circ  + \widehat {IAB} = 90^\circ  + \dfrac{1}{2}\widehat {BAC}\).