Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp.
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC
=> AO là đường trung tuyến ứng với cạnh huyền
=> OA = OB =OC = 1/2 BC
=> O là tâm của đường tròn ngoại tiếp tam giác ABC
Vậy ....
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác.
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC
=>OA = OB =OC (*)
mà BC là đường kính của đường tròn ngoại tiếp
=> O là trung điểm BC
=> OB = OC = 1/2 BC(**)
từ (*) và (**) => OA = OB = OC = 1/2 BC
=> tam giác ABC vuông tại A
@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?
Giả sử tam giác ABC có trung tuyến AM thoả AM=MB=MC. Khi đó gọi K là điểm trên AM sao cho AM = MK. Dễ dàng nhận thấy ABKC là hình chữ nhật => góc BAC=90 -> tam giác vuông
Xét \(\Delta ABC\), đường trung tuyến AM có \(AM=\frac{1}{2}BC\). Ta sẽ chứng minh : \(\widehat{BAC}=90^0\)
Dễ thấy : MA = MB = MC
Các \(\Delta MAB,\Delta MAC\)cân tại M nên: \(\widehat{B}=\widehat{A_1},\widehat{C}=\widehat{A_2}\). Do đó :
\(\widehat{B}+\widehat{C}=\widehat{A_1}+\widehat{A_2}=\widehat{BAC}\)
toaniq.com/chung-minh-tinh-chat-duong-trung-tuyen-cua-tam-giac-vuong/
* Chứng minh :
ta có :
MA = MB = MC ( giả thiết )
Các tam giác MAB, MAC cân tại M
=> \(\widehat{A_1}=\widehat{B}\) ; \(\widehat{A_2}=\widehat{C}\) ( hai góc ở đáy ).
Vậy \(\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}=\widehat{A}=\widehat{B}+\widehat{C}=\frac{180^0}{2}=90^0\)
Vậy tam giác ABC vuông tại A.
Cho tam giác ABC; A'B'C' ; đường trung tuyến AM; A'M' thỏa mãn các điều kiện như đã cho
Gọi H là điểm đối xứng với A qua M; K là điểm đối xứng với A' qua M'
+) Tam giác AMC và HMB có: MC = MB (vì M là trung điểm của BC); góc AMC = HMB (đối đỉnh); AM = HM
=> tam giác AMC = HMB ( c - g - c) => AC = HB
+) Tương tự, tam giác A'M'C' = KM'B' ( c - g - c) => A'C' = KB'
mà AC = A'C' nên HB = KB'
+) Tam giác ABH và A'B'K có: AB = A'B'; BH = B'K; AH = A'K ( vì AH = 2.AM; A'K = 2.A'M' mà AM = A'M')
=> tam giác ABH = A'B'K ( c- c- c) => góc BAM = B'A'M' (1)
+) Chứng minh tương tự, ta có: tam giác ACH = A'C'K ( c - c - c) => góc CAM = C'A'M' (2)
Từ (1)(2) => góc BAM + CAM = B'A'M' + C'A'M' => góc BAC = góc B'A'C'
+) Xét tam giác ABC và A'B'C' có: AB = A'B'; góc BAC = B'A'C'; AC= A'C'
=> Tam giác ABC = A'B'C' (c - g- c)
Vậy.....
a) gọi tam giác đó là tam giác ABC vuông tại A
Tam giác vuông ABC vuông tại A,có AM là trung tuyến
Trên tia đối của MA lấy điểm D sao cho MA=MD
\(\Rightarrow AM=\frac{1}{2}AD\left(1\right)\)
Ta có Tứ giác ABDC là hình bình hành và góc A = 90
=>ABDC là hình chữ nhật
\(\Rightarrow AD=BC\left(2\right)\)
THAY (2) VÀO (1)
\(\Rightarrow AM=\frac{1}{2}BC\)
Vậy trong một tam giác vuông,đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền
b) ngược lại :3
a) Gọi Δ đó là ΔABC, ΔABC vuông tại A, AM là trung tuyến ΔABC
Trên tia đối MA lấy MD sao cho MD = MA
Xét ΔBMA và ΔCMD có:
MB = MC (AM: trung tuyến BC)
BMA = CMD (đối đỉnh)
MA = MD (cách vẽ)
=> ΔBMA = ΔCMD (c.g.c)
=> AB = DC (2 cạnh tương ứng)
ABM = DCM (2 góc tương ứng), mà 2 góc ở vị trí slt
=> AB // CD
Có: AB // CD, AB ⊥ AC => DC ⊥ CA
Xét ΔBAC và ΔDCA có:
BAC = DCA (cùng = 90o)
AB = CD (cmt)
AC: chung
=> ΔBAC = ΔDCA (2cgv)
=> BC = DA (2 cạnh tương ứng)
mà AM = 1/2AD => AM = 1/2BC
=> ĐPCM
b) Gọi Δ đó là ABC, AD là trung tuyến Δ, AD = 1/2BC
Do AD là trung tuyến ΔABC => DB = DC = 1/2C
Mà AD = 1/2BC
=> DB = DC = DA
=> ΔDBA và DAC là 2 Δ cân tại D
=> DBA = DAB, DCA = DAC
Xét ΔABC có: ABC + BCA + BAC = 180o (đ/lí tổng 3 góc Δ)
=> 2(DAB + DAC) = 180o
=> BAC = 90o
=> ΔABC là Δ vuông tại A
=> ĐPCM