Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(*) với k = 0 pt <=> \(x-2=0\Leftrightarrow x=2\) ( TM )
(*) với k khác 0 . pt là pt bậc 2
\(\Delta=\left(1-2k\right)^2-4k\left(k-2\right)=4k^2-4k+1-4k^2+8k=4k+1\)
Để pt có nghiệm hữu tỉ khi 4k + 1 là số chính phương
=> \(4k+1=a^2\) (1) Vì 4k + 1 là số lẻ => a^2 là số lẻ => a là số lẻ => a = 2n + 1 ( n thuộc Z ) thay vào (1) ta có
\(4k+1=\left(2n+1\right)^2=4n^2+4n+1\Leftrightarrow4k=4n\left(n+1\right)\Leftrightarrow k=n\left(n+1\right)\)
Vậy với k = n(n+1) thì pt luôn có nghiệm hữu tỉ ( n thuộc Z )
khó wa !!!!!!!!!!!!!!!!!!!!!!!!!!
mình ko giải được!!!!!!!!!!!!!!!!!!!!!!!
bạn tich cho minh nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2) năm mới chúc nhau niềm vui ( cho bài dễ thôi )
Vt >/ 3 + 2 = 5
VP </ 5
dấu = xảy ra khi x =-1
Áp dụng BĐT cô si cho 2 số ko âm \(\sqrt{a}\) và \(\sqrt{b}\) ta được:
\(\sqrt{a}+\sqrt{b}\ge2\sqrt{\sqrt{ab}}\)
Suy ta: \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{ab}}}=\sqrt{\sqrt{ab}}=\sqrt[4]{ab}\)
=>điều cần chứng minh
\(\dfrac{2}{xy}-\dfrac{2}{y\left(x+y\right)}-\dfrac{2}{x\left(x+y\right)}=\dfrac{2\left(x+y\right)-2x-2y}{xy\left(x+y\right)}=0\)
\(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{\left(x+y\right)^2}}\)
\(=\sqrt{\left(\dfrac{1}{x}\right)^2+\left(\dfrac{1}{y}\right)^2+\left(\dfrac{1}{x+y}\right)^2+2\times\dfrac{1}{x}\times\dfrac{1}{y}-2\times\dfrac{1}{y}\times\dfrac{1}{x+y}-2\times\dfrac{1}{x}\times\dfrac{1}{x+y}}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{x+y}\right)}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{x+y}\right|\left(\text{đ}pcm\right)\)