Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-9xy-9y^2=0\)
\(\Leftrightarrow\left(x-3y\right)\left(4x+3y\right)=0\)
làm nốt
Lời giải:
a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$
$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.
$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$
$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$
d.
$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$
$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$
$=-x^2y+4x^2-2xy^2-10x$
$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$
\(x^3+27y^3=1-9xy\left(x+3y\right)\)
<=> \(x^3+27y^3+9xy\left(x+3y\right)=1\)
<=> \(\left(x+3y\right)^3=1\)
<=> \(x+3y=1\)
Vậy \(M=1\)
\(x^3+27x^3=1-9xy\left(x+3y\right)\))
\(=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=1-9xy\left(x+3y\right)\)
=\(\left(x+3y\right)\left(x^2-3xy+9y^2\right)-1+9xy\left(x+3y\right)=0\)
=\(\left(x+3y\right)\left(x^2-3xy+9y^2+9xy\right)-1=0\)
=\(\left(x+3y\right)\left(x^2+6xy+9y^2\right)-1=0\)
=\(\left(x+3y\right)\left(x+3y\right)^2-1=0\)
=\(\left(x+3y\right)\left(x+3y\right)^2=1\)
\(\Rightarrow x+3y=\left(x+3y\right)^2=1\)
\(\Rightarrow x+3y=1\)
a: \(=-8x^5+6x^3-2\)
b: \(=-\dfrac{2}{3}x+7-x^2y\)
c: \(=\dfrac{7\left(x-y\right)^4+4\left(x-y\right)^3}{\left(x-y\right)^2}=7\left(x-y\right)^2+4\left(x-y\right)\)
d: \(=\dfrac{6\left(x-3y\right)^4}{5\left(x-3y\right)}=\dfrac{6}{5}\left(x-3y\right)^3\)
1
x3-7x+6
=x3+0x2-7x +6
= x3-x2+x2-x-6x+6
=(x3-x2)+(x2-x)-(6x-6)
=x2(x-1)+x(x-1)-6(x-1)
=(x-1)(x2+x-6)
=(x-1)(x2+3x-2x-6)
=(x-1)[x(x+3)-2(x+3)]
=(x-1)(x-2)(x+3)
7) (x+2)(x+3)(x+4)(x+5)-24
=(x+2)(x+5) (x+3)(x+4)-24
=[x(x+5)+2(x+5)][x(x+4)+3(x+4)]-24
=[x2+5x+2x+10][x2+4x+3x+12]-24
=[x2+7x+10][x2+7x+12]-24
đặt a=x2+7x+10
=>x2+7x+12=a+2
=a(a+2)-24
=a2+2a-24
=a2+6a-4a-24
=(a2+6a)-(4a+24)
=a(a+6)-4(a+6)
=(a+6)(a-4)
thay a= x2+7x+10 vào ta được
(x2+7x+10+6)(x2+7x+10-4)
=(x2+7x+16)(x2+7x+6)
Bài 1:
a) \(8\left(x-2\right)-2\left(3x-4\right)=2\)
\(\Rightarrow2\left[4\left(x-2\right)-\left(3x-4\right)\right]=2\)
\(\Rightarrow4\left(x-2\right)-3x+4=0\)
\(\Rightarrow4x-8-3x+4=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
b) \(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)
\(\Rightarrow5\left[2\left(3x-2\right)+11-4x\right]-3\left(5x+2\right)=25\)
\(\Rightarrow5\left(6x-4+11-4x\right)-3\left(5x+2\right)=25\)
\(\Rightarrow5\left(2x+7\right)-3\left(5x+2\right)=25\)
\(\Rightarrow10x+35-15x-6=25\)
\(\Rightarrow-5x+29=25\)
\(\Rightarrow-5x=25-29\)
\(\Rightarrow-5x=-4\)
\(\Rightarrow x=\dfrac{4}{5}\)
c) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)
\(\Rightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)
\(\Rightarrow x+4=0\)
\(\Rightarrow x=-4\)
d) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)
\(\Rightarrow12x^2+8x-12x^2-30x+21x-21=0\)
\(\Rightarrow-x-21=0\)
\(\Rightarrow x=-21\)
Bài 2:
a) \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)
\(P=8x^2y-6y^2-9x^2y+12y^2\)
\(P=-x^2y+6y^2\)
Thay x = -1 ; y = 2 vào P ta được
\(P=-\left(-1\right)^2.2+6.2^2\)
\(P=-2+24=22\)
b) \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)
\(Q=20x^3-12x^2y-4x^3-x^2y\)
\(Q=16x^3-13x^2y\)
Thay x = -1 ; y = 2 vào Q ta được
\(Q=16\left(-1\right)^3-13\left(-1\right)^2.2\)
\(Q=-16-26\)
\(Q=-42\)
c) \(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)
\(H=x^4-xy+x^2y-x^4-x^2y+3xy\)
\(H=2xy\)
Thay x = 1/4 ; y = 2012 vào H ta được
\(H=2.\dfrac{1}{4}.2012\)
\(H=1006\)
1.a)\(8\left(x-2\right)-2\left(3x-4\right)=2\)
\(\Leftrightarrow8x-16-6x+8=2\)
\(\Leftrightarrow2x-8=2\Leftrightarrow2x=10\Leftrightarrow x=5\)
b)\(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)
\(\Leftrightarrow30x-20-15x-6+55-20x=25\)
\(\Leftrightarrow-5x+29=25\Leftrightarrow-5x=-4\Leftrightarrow x=\dfrac{4}{5}=0,8\)
\(c)2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)
\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)
\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
\(d)4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)
\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)
\(\Leftrightarrow-x-21=0\Leftrightarrow-x=21\Leftrightarrow x=-21\)
2.
a)\(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)
\(\Leftrightarrow8x^2y-6y^2-9x^2y-12y^2\)
\(\Leftrightarrow x^2y-18y^2\)
tại x=-1 , y=2
ta có:\(x^2y-18y^2=\left(-1\right)^2.2-18.2^2=2-72=-70\)
vậy \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y=-70\) tại x=-1,y=2
b)\(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)
\(\Leftrightarrow20x^3-12x^2y-4x^3-x^2y\)
\(\Leftrightarrow17x^3-13x^2y\)
tại x=-1,y=2
ta có:\(17x^3-13x^2y=17\left(-1\right)^3-13\left(-1\right)^2.2=-17-26=-43\)
vậy \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=-43\)
c)\(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)
\(\Leftrightarrow x^4-xy+x^2y-x^3-x^2y+3xy\)
\(\Leftrightarrow x^4+2xy-x^3\)
tại x=1/4 và y=2012
ta có:\(x^4+2xy-x^3=\left(\dfrac{1}{4}\right)^4+2.\dfrac{1}{4}.2012-\left(\dfrac{1}{4}\right)^3\approx1006\)