Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{2;0\right\}\)
a) A = 1002 - 992 + 982 - 972 + ... + 22 - 12
A = (1002 - 992) + (982 - 972) + ... + (22 - 12)
A = (100 - 99)(100 + 99) + (98 - 97)(98 + 97) + ... + (2 - 1)(2 + 1)
A = 1. 199 + 1. 195 + ... + 1.3
A = 199 + 195 + ... + 3
A = (199 + 3)[(199 - 3) : 4 + 1] : 2
A = 202 . 50 : 2
A = 5050
b) B = (202 + 182 + 162 + ... + 22) - (192 + 172 + 152 + ... + 12)
B = 202 + 182 + 162 + ... + 22 - 192 - 173 - 152 - ... - 12)
B = (202 - 192) + (182 - 172) + (162 - 152) + ... + (22 - 12)
B = (20 - 19)(20 + 19) + (18 - 17)(18 + 17) + ... + (2 - 1)(2 + 1)
B = 1. 39 + 1.35 + ... + 1.3
B = 39 + 35 + ... + 3
B = (39 + 3)[(39 - 3) : 4 + 1] : 2
B = 42 . 10 : 2
B = 210
#)Giải :
a)\(A=100^2-99^2+98^2-97^2+...+2^2-1\)
\(A=\left(100-99\right)+\left(98-97\right)+...+\left(2-1\right)\)
\(A=100+99+98+...+2+1\)
\(A=\frac{\left(1+100\right)100}{2}=5050\)
b)\(B=\left(20^2+18^2+16^2+...+2^2\right)-\left(19^2+17^2+15^2+...+1^2\right)\)
\(B=20^2-19^2+18^2-17^2+...+2^2-1\)
Giờ trở thành dạng của ý a) rùi nhé, tương tự mak làm theo
c)\(C=\left(-1\right)^n.\left(-1\right)^{2n+1}.\left(-1\right)^{n+1}\)
\(C=\left(-1\right)^n.\left(-1\right)^2.\left(-1\right)^n.\left(-1\right).\left(-1\right)^n.\left(-1\right)\)
\(C=\left[\left(-1\right)^n.\left(-1\right)^n.\left(-1\right)^n\right].1.\left(-1\right).\left(-1\right)\)
\(C=\left(-1\right)^n.1.1\)
\(C=\left(-1\right)^n\)
B1:
A=1/3+1/3^2+1/3^3+...+1/3^100
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99
3A - A = 1 - 1/3^100 = 2A
A = (1 - 1/3^100)/2
B2:
a)
để A nguyên <=> n + 3 ⋮ n - 5
=> n - 5 + 8 ⋮ n - 5
=> 8 ⋮ n - 5
=> ...
b)
để B nguyên <=> 1 - 2n ⋮ n + 3
=> 4 - 2n - 3 ⋮ n + 3
=> 4 - 2(n + 3) ⋮ n + 3
=> 4 ⋮ n + 3
=> ...