K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2020

a) Vì \(a>b\)\(\Rightarrow2020a>2020b\)

\(\Rightarrow2020a-3>2020b-3\)

b) Vì \(50-2020m< 50-2020n\)\(\Rightarrow2020m>2020n\)

\(\Rightarrow m>n\)

a/ ta có : a<b

=> 2a<2b

=>2a-1<2b-1

 

24 tháng 4 2023

1.

a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)

  -3a . \(\left(\dfrac{-1}{3}\right)\) <  -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )

         a < b

b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)

   4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )

        a < b

2. 

a. Ta có: a < b 

3a < 3b ( nhân cả 2 vế cho 3)

3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )

b. Ta có: a < b

-2a > -2b (nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)

c. Ta có: a < b 

2a < 2b (nhân cả vế cho 2)

2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)

d. Ta có: a < b

3a < 3b (nhân cả 2 vế cho 3)

3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)

Ta có: 3 < 4

đến đây ko bắt cầu qua đc chắc đề bài sai

 

 

 

20 tháng 7 2015

kho qua          

14 tháng 7 2016

Ta có:

A-B=2m^3+3m^3-4mn^2

TH1

Nếu m > n. Đặt m=n+x

óA-B=2(n+x)^3+3m^3-4(n+x)n^2

óA-B=2(n^3+3n^2x+2nx^2+x^3)=3m^3-4n^3-4n^2x

óA-B=n^3+2n^2x+6nx^2+2x^3>0

Vậy A>B

TH2                     

Nếu m < n. Đặt n=m+y

óA-B=2m^3+3(m+y)^3-4m(m+y)^2

óA-B=2m^3+3(m^3+3m^2y+3my^2+y^3)-4m^3-8m^2y-4my^2

óA-B=m^3+m^2y+5my^2+3y^3> 0

Vậy A > B

28 tháng 8 2017

1 < 3

⇒ 2b + 1 < 2b + 3 (Cộng hai vế với 2b)

Mà 2a + 1 < 2b + 1 (Theo ý a,)

⇒ 2a + 1 < 2b + 3 (Tính chất bắc cầu).

Vậy 2a + 1 < 2b + 3.

9 tháng 10 2016

a/b>a+9/b+9

=> a(b+9)>b(a+9)

<=> ab+9a>ab+9b

<=> 9a>9b

<=>a>b

5 tháng 5 2019

a) -8m + 2
 Vì m>n mà số nguyên âm nào có trị tuyệt đối lớn hơn thì bé hơn nên suy ra ta có:

-8m + 2 < - 8n + 2

b) 6n - 1 với 6m + 2

6n - 1 < 6m + 2

a: R-3=(x^2+x-1-3x)/x=(x-1)^2/x

Nếu x>0 thì R-3>0

=>R>3

Nếu x<0 thì R-3<0

=>R<3

c: Để R>4 thì R-4>0

=>\(\dfrac{x^2+x+1-4x}{x}>0\)

=>\(\dfrac{x^2-3x+1}{x}>0\)

TH1: x>0 và x^2-3x+1>0

=>x>0 và \(\left[{}\begin{matrix}x< \dfrac{3-\sqrt{5}}{2}\\x>\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow x>\dfrac{3+\sqrt{5}}{2}\)

mà x nguyên

nên x>3

TH2: x<0 và x^2-3x+1<0

=>x<0 và \(\dfrac{3-\sqrt{5}}{2}< x< \dfrac{3+\sqrt{5}}{2}\)(loại)