Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: a>b => 2a > 2b (nhân 2 vế với 2)
=> 2a - 3 > 2b - 3 (cộng 2 vế với -3)
b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)
=> a > b (nhân 2 vế với -1/4)
c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)
=> -4a < 5c-1
Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)
b) Ta có : 5c - 1 < - 4b \(\Rightarrow\)5c -1 + 3 < - 4b + 3 \(\Rightarrow\)5c + 2 < 3 - 4b
Mà 5c + 2 > 3 - 4a \(\Rightarrow\)3 - 4a < 5c + 2 < 3 - 4b \(\Rightarrow\)3 - 4a < 3 - 4b \(\Rightarrow\)4a < 4b \(\Rightarrow\)a < b
Vậy nếu 3 - 4a < 5c + 2 và 5c - 1 < - 4b thì a < b .
ta có:\(a< b\Rightarrow4a< 4b\) và \(1< 3\)
\(\Rightarrow4a+1< 4b+3\)
Câu b tương tự nhưng nhớ đổi dấu khi nhân vs số âm
2,
a, Nếu 2a + 4 \(\ge\) 2b + 4
thì 2a \(\ge\) 2b hay a \(\ge\) b
b, Nếu 3a - 5 \(\le\) 3b - 5
thì 3a \(\le\) 3b hay a \(\le\) b
3,
a, Nếu a \(\le\) b thì a - b \(\le\) 0 hay 2019(a - b) \(\le\) 0 hay 2019a \(\le\) 2019b hay 2019a + 2020 \(\le\) 2019b + 2020
b, Nếu a \(\le\) b thì -a \(\ge\) -b hay -42a \(\ge\) -42b hay -42a - 24 \(\ge\) -42b - 24
3,
a, Nếu a > b thì 3a > 3b hay 3a + 2 > 3b + 2
b, Nếu a > b thì -a < -b hay -4a < -4b hay -4a - 5 < -4b - 5
Chúc bn học tốt!!
A sai vì:
Nếu a=-3 b=2 thì a<b nhưng a2>b
(chứng minh 1 mệnh đề sai chỉ cần đưa ra 1 ví dụ trái mệnh đề)