Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(17^{2012}+11^{2012}-7^{2012}\)
= \(\left(17^4\right)^{503}+\left(11^2\right)^{1006}-\left(7^4\right)^{503}\)
= \(\left(...1\right)^{503}+\left(...1\right)^{1006}-\left(...1\right)^{503}\)
= \(\left(...1\right)+\left(...1\right)-\left(...1\right)\)
= \(\left(...2\right)-\left(...1\right)=\left(...1\right)\)
Vậy chữ số hàng đơn vị của A là 1
Chữ số tận cùng của 32021=34k.3=....3
Chữ số tận cùng của 72022=74k.72=....9
Chữ số tận cùng của 132023=...34k.(...3)3=...9
Chữ sống hàng đơn vị của B là: (...3)(...9)(...9)
\(3^{2021}=3^{2020}\cdot3=\overline{...1}\cdot3=\overline{...3}\)
\(7^{2022}=7^{2020}\cdot7^2=\overline{...1}\cdot49=\overline{...9}\)
\(13^{2023}=13^{2020}\cdot13^3=\overline{...1}\cdot\overline{...7}=\overline{...7}\)
\(\Rightarrow3^{2021}\cdot7^{2022}\cdot13^{2023}=\overline{...3}\cdot\overline{...9}\cdot\overline{...7}=\overline{...9}\)
Vậy chữ số hàng đơn vị của tích trên là 9
\(B=3^{2021}.7^{2022}.13^{2023}\)
\(=3^{2020}.3.7^{2020}.7^2.13^{2020}.13^3\)
\(=\left(3^4\right)^{505}.3.\left(7^4\right)^{505}.49.\left(13^4\right)^{505}.2197\)
\(=\overline{\left(...1\right)}^{505}.3.\overline{\left(...1\right)}^{505}.49.\overline{\left(...1\right)}^{505}.2197\)
\(=\overline{\left(...1\right)}.3.\overline{\left(...1\right)}.49.\overline{\left(...1\right)}.2197\)
\(=\overline{\left(...3\right)}.\overline{\left(...9\right)}.\overline{\left(...7\right)}\)
\(=\overline{...9}\)
Ta có:31=...3 71=...7 131=...3
32=...9 72=...9 132=...9
33=...7 73=...3 133=...7
34=...1 74=...1 134=...1
35=...3 75=...7 135=...3
... ... ...
32009=...1 72010=...9 132011=...7
->32009.72010.132011=(...1).(...9).(...7)=...3
->Hàng đơn vị của b=3
Xét 32009 = 32008.3=(34)502.3= ...1502.3= ...1.3=...3 (1)
Xét 72010=72009.7=(74)287.7=...1287.7=...1 .7= ...7 (2)
Xét 132011=132008.133=(134)502.133=...1502. ...7 =...1. ...7=...7 (3)
(1);(2);(3) suy ra b=...3 + ...7 + ...7=...0 + ...7=...7
Vậy b có chữ số hàng đơn vị là 7
gdghg