Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)
\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)
c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)
\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)
\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)
\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)
\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)
d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)
\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)
\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)
\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)
\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)
a: \(3\sqrt{200}=3\cdot10\sqrt{2}=30\sqrt{2}\)
b: \(-5\sqrt{50a^2b^2}=-5\cdot5\sqrt{2a^2b^2}\)
\(=-25\cdot\left|ab\right|\cdot\sqrt{5}\)
c: \(-\sqrt{75a^2b^3}\)
\(=-\sqrt{25a^2b^2\cdot3b}=-5\left|ab\right|\cdot\sqrt{3b}\)
Câu 2:
a: \(=\sqrt{\left(37-35\right)\left(37+35\right)}=\sqrt{72\cdot2}=12\)
b: \(=\sqrt{\left(65-63\right)\left(65+63\right)}=\sqrt{128\cdot2}=16\)
c: \(=\sqrt{\left(221-220\right)\left(221+220\right)}=\sqrt{441}=21\)
d: \(=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{225\cdot9}=3\cdot15=45\)