Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)vì 60.n chia hết cho 15
45 chia hết cho 15
=>60.n+45 chia hết cho 15
b)vì 60.n chia hết cho 30
45 ko chia hết cho 30
=>60.n +45 ko chia hết cho 30
60 x n + 45 chia hết cho 15
Vì 60 chia hết cho 15 và 45 chia hết cho 15 => tổng chia hết hết cho 15
60 x n + 45 ko chia hết cho 15 vì
60 x n là số chẵn vì 60 là số chẵn
45 là số lẻ => tổng là lẻ
mà 30 là số chẵn mà lẻ ko chia hết cho chẵn
ta có tổng trên số 45 ko chia hết cho 30
mà trong một tổng chỉ cần một số ko chia hết cho một số nào đó thì cả tổng ko chia hết cho số đó Vậy tổng trên chỉ chia hết cho 15 chứ ko chia hết cho 30
Vì 60 chia hết cho 15=>60.n chia hết cho 15. ->45 chia hết cho 15=> 60.n+45 chia hết cho 15. Vì 60 chia hết cho 30=>60.n chia hết cho 30. Nhưng 45 ko chia hết cho 30=>60.n+45 ko chia hết cho 30
Ta có : M = 60.n + 45 với n là số tự nhiên
=> M = 30 . 2 .n + 45
Vì 30.2.n chia hết cho 30 mà 45 không chia hết cho 30 nên M không chia hết cho 30 .
Và M = 60.n + 45 với n là số tự nhiên
=> M = 15.4.n + 15 . 3
=> M chia hết cho 15 .
Vậy bài toán được chứng minh
Ta có: \(\hept{\begin{cases}60n⋮15\\45⋮15\end{cases}\Rightarrow60n+45⋮15}\)
\(\hept{\begin{cases}60n⋮30\\45⋮̸30\end{cases}\Rightarrow60n+45⋮30̸}\)
k nha @_@ hai mắt chột %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60n+45=30(2n+1)+15
Ta có 30(2n+1) chia hết cho 30; 15 không chia hết cho 30
=> 60n+45 không chia hết cho 30
a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)
\(=4\left(1+...+3^{10}\right)⋮4\)
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Ta có:
60 chia hết cho 15 nên 60n chia hết cho 15
Mà 45 chia hết cho 15
=>60n+45 chia hết cho 15
Ta lại có:
60 chia hết cho 30 nên 60n chia hết cho 30.
Mà 45 không chia hết cho 30
=> 60n+45 không chia hết cho 30
Vậy với mọi n\(\in\)N thì 60n+45 chia hết cho 15 nhưng không chia hết cho 30.
Ta có | Tôi không biết |
Vậy suy ra | Tôi chả biết gì |
Nên suy ra | Tôi chả giải được bài này! |
Ta có: \(60⋮5\)nên \(60⋮5\)
\(45⋮15\)
=>\(60.n+45⋮15\)
Ta lại có: \(60⋮30\)nên \(60⋮30\)
Mà 45 ko chia hết cho 30
=> Với mọi n thuộc N thì \(60.n+45⋮15\)nhưng ko chia hết cho 30 ( đpcm )