Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A=6n-1/3n+2= (6n+4)-5/3n+2=2+5/3n+2
=> Đẻ Acó gtri nguyên thì 5 phải chia hết cho 3n+2
=> 3n+2 thuộc U(5)=(1,5,-5,-1)
ta có bảng sau:( bạn tự kẻ nhé : theo hàng ngang 1 cột là "3n+2" cột dưới là "n"
Vì n thuộc Z nên n= -1
a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3
=> 2.(2n-3)+5\(⋮\)2n-3
Mà 2.(2n-3)\(⋮\)2n-3
=>5\(⋮\)2n-3
=>2n-3\(\in\)Ư(5)
lập bảng
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
Vậy n \(\in\){-1;1;2;4}
b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0
TH1 2n-3=1
2n=1+3
2n=4
n=4:2
n=2( chọn)
Vậy n=2
a)Gọi A=n+1/n+2
để A là số nguyên thì n+1 chia hết cho n - 2
ta có : n+1= n-2+3 chia het cho n-2
mà n-2 chia hết cho n-2 nên 3 chia hết cho n-2
=> n-2 thuộc Ư(3)={-3;3;-1;1}
=>n thuộc { 3;1;-1;5}
vậy n thuộc {3;-1;1;5}
) ta có : A max
=> (n-2) min mà (n-2) thuộc Z
=>(n-2)>0
<=> (n-2 ) =1
<=> n=3
Xin bạn Nguyễn Công Tỉnh nhìn kĩ đề n + 2 nhé. mk xin giải lại. Mk ko có ý coi thường nhé.
Đặt \(A=\frac{n+1}{n+2}\)
Để \(A\inℤ\) thì \(\left(n+1\right)⋮\left(n+2\right)\)
\(\Leftrightarrow\left(n+2-1\right)⋮\left(n+2\right)\)
Vì \(\left(n+2\right)⋮\left(n+2\right)\) nên \(1⋮\left(n+2\right)\)
\(\Rightarrow\left(n+2\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(TH1:n+2=-1\)
\(\Leftrightarrow n=-1-2\)
\(\Leftrightarrow n=-3\)
\(TH2:n+2=1\)
\(\Leftrightarrow n=1-2\)
\(\Leftrightarrow n=-1\)
Vậy \(n\in\left\{-3;-1\right\}\) thì \(\frac{n+1}{n+2}\) là số nguyên.
a) để A có giá trị nguyên thì
6n-1 chia hết cho 3n+2
6n+4-5 chia hết cho 3n+2
suy ra:2(3n+2)-5 chia hết cho 3n+2
vì 3n+2 chia hết cho 3n+2 nên 2(3n+2) cũng chia hết cho 3n+2
suy ra : 5 chia hết cho 3n+2
suy ra:3n+2 thuộc ước của 5
Ư(5)=1;-1;5;-5
ta có bảng giá trị
3n+2 1 -1 5 -5
n -1/3 -1 1 -7/3
mà A thuộc Z
suy ra:n=1;-1
vậy để A có giá trị nguyên thì
n thuộc 1;-1
b)cậu tự làm nhé
a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 5 => n = 7
n - 2 = -5 => n = -3
Vậy n = {3;1;7;-3}
b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất
=> n - 2 đạt giá trị lớn nhất (n - 2 \(\ne\)0 ; n - 2 < 0)
=> n - 2 = -1 => n = 1
Vậy để A có giá trị nhỏ nhất thì n = 1
c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất
=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)
=> n - 2 = 1 => n = 3
Vậy để A đạt giá trị lớn nhất thì n = 3