Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>2^x*4-2^x*3=32
=>2^x=32
=>x=5
b: =>(4x-3)^2-(4x-3)=0
=>(4x-3)(4x-3-1)=0
=>(4x-3)(4x-4)=0
=>x=3/4 hoặc x=1
c: =>7^2x+7^2x*7^3=344
=>7^2x=1
=>2x=0
=>x=0
d: =>(7x-3)^2012-(7x-3)^2010=0
=>(7x-3)^2010*[(7x-3)^2-1]=0
=>(7x-3)^2010*(7x-4)(7x-2)=0
=>x=2/7; x=4/7; x=3/7
e: =>(4x^2-3)^3=-8
=>4x^2-3=-2
=>4x^2=1
=>x^2=1/4
=>x=1/2 hoặc x=-1/2
a) 2x(22 - 3) = 32
2x.1=25
=> x = 5
b) (4x - 3)2 = 4x -3
=> (4x - 3)2 - (4x - 3) = 0
(4x-3)[(4x - 3) - 1] = 0
(4x-3)(4x - 4)=0
\(\Rightarrow\left[{}\begin{matrix}4x-3=0\\4x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=1\end{matrix}\right.\)
c) 72x + 72x+3 = 344
=> 72x(1 + 73) =344
72x . 344 = 344
=> 2x = 0 => x = 0
d) (7x - 3)2012 = (3 - 7x)2010
=> (7x - 3)2012 - (7x - 3)2010 = 0
(7x - 3)2010 [(7x - 3)2 - 1] = 0
\(\Rightarrow\left[{}\begin{matrix}7x-3=0\\\left(7x-3\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\7x=4\\7x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\x=\dfrac{4}{7}\\x=\dfrac{2}{7}\end{matrix}\right.\)
e) (4x2 - 3)3 + 8 = 0
(4x2 - 3)3 = (-2)3
=> 4x2 - 3 = -2
4x2 = 1
x2 = 1/4
=> \(x=\pm\dfrac{1}{2}\)
(5 - \(x\))(9\(x^2\) - 4) =0
\(\left[{}\begin{matrix}5-x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x^2=\dfrac{4}{9}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-\dfrac{2}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) { - \(\dfrac{2}{3}\); \(\dfrac{2}{3}\); \(5\)}
72\(x\) + 72\(x\) + 3 = 344
72\(x\) \(\times\) ( 1 + 73) = 344
72\(x\) \(\times\) (1 + 343) = 344
72\(x\) \(\times\) 344 = 344
72\(x\) = 344 : 344
72\(x\) = 1
72\(x\) = 70
\(2x\) = 0
\(x\) = 0
Kết luận: \(x\) = 0
b) \(\left(x-1\right)^3=\dfrac{1}{8}\)
\(\left(x-1\right)^3=\left(\dfrac{1}{2}\right)^3\)
\(x-1=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}+1\)
\(x=\dfrac{3}{2}\)
\(\Leftrightarrow2+4+6+...+2k=72\)
Số số hạng là (2k-2):2+1=k-1+1=k(số)
Tổng là \(\dfrac{\left(2k+2\right)\cdot k}{2}=k\left(k+1\right)\)
Theo đề, ta có: k(k+1)=72
=>k=8
a)x=-2
b)x=1
c)x=1/2
f)x=1 hoặc x=-1
h)x=0 hoặc x=6
i)x=2
hok tốt!
_Lan Lan_
Áp dụng hằng đẳng thức:\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
Áp dụng vào từng bài là được:
\(VD1:x^3+3x^2+3x+1=-1\)
\(\Rightarrow\left(x+1\right)^3=-1\)
\(\Rightarrow x=-2\)
\(VD2:x^3-9x^2+27x-27=-8\)
\(\Rightarrow\left(x-3\right)^3=-8\)
\(\Rightarrow x=1\)
2xy+3x = 4 : \(16x^4-72x^2+90\)
=> 2+3(\(x^2y\)) = (16-72+90)\(x^6\)
=>5\(x^2y\) = \(34x^6\)
a) 2x+2x+3=144
2x . 1 + 2x . 23 = 144
2x . ( 1 + 23 ) = 144
2x . 9 = 144
2x = 144 : 9
2x = 16
2x = 24
=> x = 4
b) 72x + 72x+2 = 2450
72x . 1 + 72x . 72= 2450
72x . ( 1 + 72 ) = 2450
72x . 50 = 2450
72x = 2450 : 50
72x = 49
72x = 72
=> 2x = 2
=> x = 1
Ta có : 2x + 2x + 3 = 144
=> 2x (1 + 23) = 144
=> 2x . 9 = 144
=> 2x = 144 : 9
=> 2x = 16
=> 2x = 24
=> x = 4