Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{1}{2019}x2018\)
\(=\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{2018}{2019}=2-\dfrac{2019}{2018}=\dfrac{2017}{2018}\)
tớ nghĩ là các phân số trên đều là những ps nhỏ hơn 1 lên A<3
mình chỉ nghĩ thôi. K biết đúng hay sai đâu. đúng thì tích còn sai thì bỏ qua cho
Trả lời :...............................................
\(\frac{4078379}{4078379}\)
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé Kim Râu La
Ta có:
\(A=\frac{2018+2019}{2019+2020}=\frac{2018}{2019+2020}+\frac{2019}{2019+2020}\)
mà 2019+2020 >2019>2020 \(\Rightarrow\frac{2018}{2019+2020}< \frac{2018}{2019};\frac{2019}{2019+2020}< \frac{2019}{2020}\)
\(\Rightarrow\frac{2018}{2019+2020}+\frac{2019}{2019+2020}< \frac{2018}{2019}+\frac{2019}{2020}\)hay \(A< B\)
A = \(\dfrac{2020}{2019}\) - \(\dfrac{2019}{2018}\) + \(\dfrac{1}{2019\times2018}\)
A = \(\dfrac{2020}{2019}\) - \(\dfrac{2019}{2018}\) + ( \(\dfrac{1}{2018}\) - \(\dfrac{1}{2019}\))
A = \(\dfrac{2020}{2019}\) - \(\dfrac{2019}{2018}\) + \(\dfrac{1}{2018}\) - \(\dfrac{1}{2019}\)
A = ( \(\dfrac{2020}{2019}\) - \(\dfrac{1}{2019}\)) - ( \(\dfrac{2019}{2018}\) - \(\dfrac{1}{2018}\))
A = \(\dfrac{2019}{2019}\) - \(\dfrac{2018}{2018}\)
A = 1 - 1
A = 0
= (1-1/2018)-(1+1/2018)-2020/2019
= 1-1/2018-1-1/2018-2020/2019
= -2/2018-2020/2019
vậy thôi
=(1-1/2018)-(1+1/2018)-2020/2019
=1-1/2018-1-1/2018-2020/2019
=-2/2018-2020/2019
\(\frac{2016}{2017}\)x \(\frac{2017}{2018}\)x \(\frac{2019}{2020}\)=\(\frac{504}{505}\)
đ/s:\(\frac{504}{505}\)
\(\frac{2016}{2017}\times\frac{2017}{2018}\times\frac{2018}{2019}\times\frac{2019}{2020}\)=
\(0,998109801980198\)
Đổi ra ta sẽ có !
\(\frac{504}{505}\)
Vậy là : ...................
\(A=\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{1}{2018\times2019}\)
\(A=\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{1}{2018}-\dfrac{1}{2019}\)
\(A=\left(\dfrac{2020}{2019}-\dfrac{1}{2019}\right)-\left(\dfrac{2019}{2018}-\dfrac{1}{2018}\right)\)
\(A=\left(\dfrac{2020-1}{2019}\right)-\left(\dfrac{2019-1}{2018}\right)\)
\(A=1-1\)
\(A=0.\)
\(A=\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{1}{2018\times2019}\)
\(A=\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{1}{2018}-\dfrac{1}{2019}\)
\(A=\left(\dfrac{2020}{2019}-\dfrac{1}{2019}\right)-\left(\dfrac{2019}{2018}-\dfrac{1}{2018}\right)\)
\(A=\dfrac{2019}{2019}-\dfrac{2018}{2018}\)
\(A=1-1\)
\(A=0\)