Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left\{x\in N|0\le x\le4\right\}\)
b) \(B=\left\{x\in N|x=4k;0\le k\le4;k\in N\right\}\)
c) \(C=\left\{x\in Z|x=\left(-3\right)^k;1\le k\le4;k\in N\right\}\)
d) \(D=\left\{x\in N|x=k^2;k=3a;1\le a\le4;a\in N\right\}\)
a: \(=\dfrac{-2}{7}\cdot\dfrac{3}{2}=\dfrac{-3}{7}\)
b: \(=3\cdot\dfrac{7}{12}=\dfrac{7}{4}\)
c: \(=\dfrac{11}{12}\cdot\dfrac{16}{33}\cdot\dfrac{3}{5}=\dfrac{1}{3}\cdot\dfrac{4}{3}\cdot\dfrac{3}{5}=\dfrac{1}{3}\cdot\dfrac{4}{5}=\dfrac{4}{15}\)
\(a,=\left[-1;3\right]\\ b,=\left(4;7\right)\\ c,=\varnothing\\ d,=\left[-2;2\right]\)
Đường thẳng a: 3x - 4y - 31 = 0
Gọi I ( x; y ) là tâm của đương tròn cần tìm
Ta có: d( I; a ) = IA = 5 =>\(\frac{\left|3x-4y-31\right|}{\sqrt{3^2+4^2}}=5\) <=> \(\left|3x-4y-31\right|=25\)<=> 3x - 4y - 31 = 25 ( 1) hoặc 3x - 4y - 31 = -25 ( 2)
a có VTPT \(\overrightarrow{n}\) = ( 3; -4) => a có VTCP \(\overrightarrow{u}\) = ( 4; 3 )
Lại có: IA vuông góc với a => ( 1- x ) . 4 + 3 ( - 7 - y ) = 0 <=> - 4x -3 y = 17 (3)
Từ (1) ; (3) => \(I_1\left(4;-11\right)\)
Từ (2) ; (3) => \(I_2\left(-2;-3\right)\)
Đáp án A
a) \(\sqrt {11{x^2} - 14x - 12} = \sqrt {3{x^2} + 4x - 7} \)
\(\begin{array}{l} \Rightarrow 11{x^2} - 14x - 12 = 3{x^2} + 4x - 7\\ \Rightarrow 8{x^2} - 18x - 5 = 0\end{array}\)
\( \Rightarrow x = - \frac{1}{4}\) và \(x = \frac{5}{2}\)
Thay nghiệm vừa tìm được vào phương trình \(\sqrt {11{x^2} - 14x - 12} = \sqrt {3{x^2} + 4x - 7} \) ta thấy chỉ có nghiệm \(x = \frac{5}{2}\) thảo mãn phương trình
Vậy nhiệm của phương trình đã cho là \(x = \frac{5}{2}\)
b) \(\sqrt {{x^2} + x - 42} = \sqrt {2x - 30} \)
\(\begin{array}{l} \Rightarrow {x^2} + x - 42 = 2x - 3\\ \Rightarrow {x^2} - x - 12 = 0\end{array}\)
\( \Rightarrow x = - 3\) và \(x = 4\)
Thay vào phương trình \(\sqrt {{x^2} + x - 42} = \sqrt {2x - 30} \) ta thấy không có nghiệm nào thỏa mãn
Vậy phương trình đã cho vô nghiệm
c) \(2\sqrt {{x^2} - x - 1} = \sqrt {{x^2} + 2x + 5} \)
\(\begin{array}{l} \Rightarrow 4.\left( {{x^2} - x - 1} \right) = {x^2} + 2x + 5\\ \Rightarrow 3{x^2} - 6x - 9 = 0\end{array}\)
\( \Rightarrow x = - 1\) và \(x = 3\)
Thay hai nghiệm trên vào phương trình \(2\sqrt {{x^2} - x - 1} = \sqrt {{x^2} + 2x + 5} \) ta thấy cả hai nghiệm đếu thỏa mãn phương trình
Vậy nghiệm của phương trình \(2\sqrt {{x^2} - x - 1} = \sqrt {{x^2} + 2x + 5} \) là \(x = - 1\) và \(x = 3\)
d) \(3\sqrt {{x^2} + x - 1} - \sqrt {7{x^2} + 2x - 5} = 0\)
\(\begin{array}{l} \Rightarrow 3\sqrt {{x^2} + x - 1} = \sqrt {7{x^2} + 2x - 5} \\ \Rightarrow 9.\left( {{x^2} + x - 1} \right) = 7{x^2} + 2x - 5\\ \Rightarrow 2{x^2} + 7x - 4 = 0\end{array}\)
\( \Rightarrow x = - 4\) và \(x = \frac{1}{2}\)
Thay hai nghiệm trên vào phương trình \(3\sqrt {{x^2} + x - 1} - \sqrt {7{x^2} + 2x - 5} = 0\) ta thấy chỉ có nghiệm \(x = - 4\) thỏa mãn phương trình
Vậy nghiệm của phương trình trên là \(x = - 4\)
Bài 2:
a: \(=248+2064-12-236\)
\(=12-12+2064=2064\)
b: \(=-298-302-300=-600-300=-900\)
c: \(=5-7+9-11+13-15=-2-2-2=-6\)
d: \(=456+58-456-38=20\)
a: \(=\dfrac{-3}{7}\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+2+\dfrac{3}{7}=2\)
b: \(=-\dfrac{5}{7}:\left(24-\dfrac{166}{7}\right)+\dfrac{37}{3}\)
\(=-\dfrac{5}{7}:\dfrac{2}{7}+\dfrac{37}{3}=\dfrac{-5}{2}+\dfrac{37}{3}=\dfrac{59}{6}\)
c: \(=4-\dfrac{32}{27}\cdot\dfrac{-27}{8}=4+4=8\)
d: \(=\dfrac{28}{15}\cdot\dfrac{3}{4}-\dfrac{11+5}{20}\cdot\dfrac{5}{7}\)
\(=\dfrac{7}{5}-\dfrac{6}{20}\cdot\dfrac{5}{7}=\dfrac{29}{35}\)