Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 22 + 42 + 62 + ... + 202
= (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2
= 22.12 + 22.22 + 22.32 + ... + 22.102
= 22 (12 + 22 + ... + 102 )
= 4 . 385
= 1540
= (1x2)^2 (2x2)^2 (3x2)^2 (4x2)^2 ..... (9x2)^2 (10x2)^2
= 1^2 x 2^2 2^2 x 2^2 3^2 x 2^2 4^2 x 2^2 ..... 9^2 x 2^2 10^2 x 2^2
= (1^2 2^2 3^2 4^2 ..... 9^2 10^2) x 2^2
= 385 x 2^2 = 385 x 4 = 1540
a: Sửa đề: 3^2
\(=3^2\cdot\dfrac{1}{3^5}\cdot3^8\cdot\dfrac{1}{3^3}=3^2\)
b: \(=3^{\left(-2\right)\cdot\left(-2\right)}\cdot\dfrac{1}{3^5}\cdot3^3=\dfrac{3^4}{3^2}=3^2\)
c: \(=2^{12}\cdot2^{16}\cdot2^4=2^{32}\)
d: \(=\left[\dfrac{1}{9}\cdot\dfrac{27}{8}\cdot3\right]\cdot\dfrac{128}{81}\)
\(=\dfrac{16}{9}=\left(\dfrac{4}{3}\right)^2\)
1)Tính:
a)\(4^2\cdot2=\left(2^2\right)^2\cdot2=2^4\cdot2=2^5=32\)
b)\(36^2:6^2=\left(36:6\right)^2=6^2=48\)
c)\(\left(\frac{2}{5}\right)^{10}:\left(\frac{4}{25}\right)^2=\left(\frac{2}{5}\right)^{10}\cdot\left(\frac{25}{4}\right)^2=\)\(\left(1\right)^{10}\cdot\left(\frac{5}{2}\right)^2=1\cdot\frac{5^2}{2^2}=1\cdot\frac{25}{4}=\frac{25}{4}\)
a
\(4^2.2=16.2=32\)
b\(36^2:6^2=36.36:6.6=36.36:36=36\)
c
a: \(=\dfrac{4^5}{2^{10}}=1\)
b: \(=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{1}{16}\cdot3=\dfrac{3}{16}\)
a, đề phải là 1/a.(a+1) = 1/a - 1/a+1 chứ bạn !
Có : 1/a.(a+1) = (a+1)-a/a.(a+1) = a+1/a.(a+1) - a/a.(a+1) = 1/a - 1/a+1
=> 1/a.(a+1) = 1/a - 1/a+1
b, Có : 2/a.(a+1).(a+2) = (a+2)-a/a.(a+1).(a+2) = a+2/a.(a+1).(a+2) - a/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)
=> 2/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)
Tk mk nha
a, \(VP=\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}==\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}=VT\)
b, \(VP=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}=VT\)
a(1/b+1/c) + b(1/c+1/a) + c(1/b+1/a) = -2,
a^3 + b^3 + c^3 = 1.
CMR 1/a + 1/b + 1/c = 1
a) \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
b) \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{\left(a+2\right)-a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)
\(=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
a, Ta có : \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{a+1-a}{a\left(a+1\right)}\)
\(VT=\frac{1}{a\left(a+1\right)}\left(đpcm\right)\)
b, Ta có : \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)
\(VT=\frac{2}{a\left(a+1\right)\left(a+2\right)}\left(đpcm\right)\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+................+\dfrac{1}{2008^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
...................
\(\dfrac{1}{2008^2}< \dfrac{1`}{2007.2008}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+............+\dfrac{1}{2007.2008}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{2007}-\dfrac{1}{2008}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2008}< 1\)
\(\Leftrightarrow A< 1\rightarrowđpcm\)