K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+................+\dfrac{1}{2008^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

...................

\(\dfrac{1}{2008^2}< \dfrac{1`}{2007.2008}\)

\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+............+\dfrac{1}{2007.2008}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{2007}-\dfrac{1}{2008}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2008}< 1\)

\(\Leftrightarrow A< 1\rightarrowđpcm\)

S = 22 + 42 + 62 + ... + 202

   = (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2

   = 22.12 + 22.22 + 22.32 + ... + 22.102

   = 22 (12 + 22 + ... + 102 )

   = 4 . 385

   = 1540

26 tháng 9

= (1x2)^2 (2x2)^2 (3x2)^2 (4x2)^2 ..... (9x2)^2 (10x2)^2 
= 1^2 x 2^2 2^2 x 2^2 3^2 x 2^2 4^2 x 2^2 ..... 9^2 x 2^2 10^2 x 2^2 
= (1^2 2^2 3^2 4^2 ..... 9^2 10^2) x 2^2 
= 385 x 2^2 = 385 x 4 = 1540

a: Sửa đề: 3^2

\(=3^2\cdot\dfrac{1}{3^5}\cdot3^8\cdot\dfrac{1}{3^3}=3^2\)

b: \(=3^{\left(-2\right)\cdot\left(-2\right)}\cdot\dfrac{1}{3^5}\cdot3^3=\dfrac{3^4}{3^2}=3^2\)

c: \(=2^{12}\cdot2^{16}\cdot2^4=2^{32}\)

d: \(=\left[\dfrac{1}{9}\cdot\dfrac{27}{8}\cdot3\right]\cdot\dfrac{128}{81}\)

\(=\dfrac{16}{9}=\left(\dfrac{4}{3}\right)^2\)

3 tháng 7 2019

1)Tính:

a)\(4^2\cdot2=\left(2^2\right)^2\cdot2=2^4\cdot2=2^5=32\)

b)\(36^2:6^2=\left(36:6\right)^2=6^2=48\)

c)\(\left(\frac{2}{5}\right)^{10}:\left(\frac{4}{25}\right)^2=\left(\frac{2}{5}\right)^{10}\cdot\left(\frac{25}{4}\right)^2=\)\(\left(1\right)^{10}\cdot\left(\frac{5}{2}\right)^2=1\cdot\frac{5^2}{2^2}=1\cdot\frac{25}{4}=\frac{25}{4}\)

3 tháng 7 2019

a

\(4^2.2=16.2=32\)

b\(36^2:6^2=36.36:6.6=36.36:36=36\)

c

a: \(=\dfrac{4^5}{2^{10}}=1\)

b: \(=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{1}{16}\cdot3=\dfrac{3}{16}\)

13 tháng 1 2018

a, đề phải là 1/a.(a+1) = 1/a - 1/a+1 chứ bạn !

Có : 1/a.(a+1) = (a+1)-a/a.(a+1) = a+1/a.(a+1) - a/a.(a+1) = 1/a - 1/a+1

=> 1/a.(a+1) = 1/a - 1/a+1

b, Có : 2/a.(a+1).(a+2) = (a+2)-a/a.(a+1).(a+2) = a+2/a.(a+1).(a+2) - a/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)

=> 2/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)

Tk mk nha

13 tháng 1 2018

a, \(VP=\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}==\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}=VT\)

b, \(VP=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}=VT\)

a(1/b+1/c) + b(1/c+1/a) + c(1/b+1/a) = -2,

a^3 + b^3 + c^3 = 1.

CMR 1/a + 1/b + 1/c = 1

20 tháng 8 2020

a) \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)

b) \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{\left(a+2\right)-a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)

\(=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)

20 tháng 8 2020

a, Ta có : \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{a+1-a}{a\left(a+1\right)}\)

\(VT=\frac{1}{a\left(a+1\right)}\left(đpcm\right)\)

b, Ta có : \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)

\(VT=\frac{2}{a\left(a+1\right)\left(a+2\right)}\left(đpcm\right)\)