Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3\cdot7\sqrt{3}+2\cdot6\sqrt{3}-4\cdot4\sqrt{3}-11\sqrt{3}\)
\(=21\sqrt{3}+12\sqrt{3}-16\sqrt{3}-11\sqrt{3}\)
\(=6\sqrt{3}\)
b: \(=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=3-\sqrt{5}+\sqrt{5}-1\)
=2
c: \(=\left(4-\sqrt{3}\right)\sqrt{\left(4+\sqrt{3}\right)^2}\)
\(=\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)\)
=16-3
=13
a) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{57}+\sqrt{108}\)
\(=20\sqrt{3}-12\sqrt{3}-2\sqrt{57}+6\sqrt{3}\)
\(=\left(20-12+6\right)\sqrt{3}-2\sqrt{57}\)
\(=14\sqrt{3}-2\sqrt{57}\)
b) \(2\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\)
\(=4\sqrt{6}-6\sqrt{6}+3\sqrt{6}-5\sqrt{6}\)
\(=\left(4-6+3-5\right)\sqrt{6}\)
\(=-4\sqrt{6}\)
\(A=\sqrt{12}+2\sqrt{27}+3\sqrt{45}-9\sqrt{48}\)
\(=2\sqrt{3}+6\sqrt{3}+9\sqrt{5}-36\sqrt{3}\)
\(=9\sqrt{5}-28\sqrt{3}\)
\(B=\left(\sqrt{48}-2\sqrt{75}+\sqrt{108}-\sqrt{147}\right):\sqrt{3}\)
\(=4-2\cdot5+6-7\)
\(=4-10+6-7\)
=-7
A=\(\sqrt{12}\)+2\(\sqrt{27}\)+3\(\sqrt{45}\) -9\(\sqrt{48}\)
=\(\sqrt{4.3}\) +2\(\sqrt{9.3}\)+3\(\sqrt{9.5}\) -9\(\sqrt{16.3}\)
=2\(\sqrt{3}\) +6\(\sqrt{3}\)+9\(\sqrt{5}\) -36\(\sqrt{3}\)
=\(\sqrt{3}\)(2+6-36) + 9\(\sqrt{5}\)
=9\(\sqrt{5}\)- 28\(\sqrt{3}\)
`a)2sqrt{48}-4sqrt{27}+sqrt{75}+sqrt{12}`
`=8sqrt3-12sqrt3+5sqrt3+2sqrt3`
`=3sqrt3`
`b)sqrt{(3-sqrt5)^2}-sqrt{20}`
`=3-sqrt5-2sqrt5`
`=3-3sqrt5`
2 câu cuối không rõ đề :v
a: \(=3\sqrt{3}-2\sqrt{3}+4\sqrt{3}-5\sqrt{3}=2\sqrt{3}\)
Bài 1:
a: \(\sqrt{27}+\dfrac{1}{2}\sqrt{48}-\sqrt{108}\)
\(=3\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-6\sqrt{3}\)
\(=-3\sqrt{3}+2\sqrt{3}=-\sqrt{3}\)
b: \(\left(\sqrt{14}-\sqrt{10}\right)\cdot\sqrt{6+\sqrt{35}}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{2}\cdot\sqrt{6+\sqrt{35}}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{12+2\sqrt{35}}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)=7-5=2\)
c: \(\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}-\dfrac{2}{\sqrt{3}-1}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\dfrac{2\left(\sqrt{3}+1\right)}{3-1}\)
\(=\sqrt{3}-\sqrt{3}-1=-1\)
Bài 2:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
\(A=\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-5+\sqrt{x}-1+2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: A=2
=>\(\sqrt{x}=2\left(\sqrt{x}-1\right)\)
=>\(2\sqrt{x}-2=\sqrt{x}\)
=>\(\sqrt{x}=2\)
=>x=4(nhận)
c: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-1\)
=>\(\sqrt{x}-1+1⋮\sqrt{x}-1\)
=>\(\sqrt{x}-1\inƯ\left(1\right)\)
=>\(\sqrt{x}-1\in\left\{1;-1\right\}\)
=>\(\sqrt{x}\in\left\{2;0\right\}\)
=>\(x\in\left\{4;0\right\}\)
a: \(A=6\sqrt{3}+10\sqrt{3}-12\sqrt{3}=4\sqrt{3}\)
b: \(B=7\sqrt{3}+5\sqrt{3}-12\sqrt{3}=0\)
c: \(=12\sqrt{2}-6+3\left(9-4\sqrt{2}\right)=12\sqrt{2}-6+27-12\sqrt{2}=21\)
d: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)
a) \(E=2\sqrt{40\sqrt{12}}+3\sqrt{5\sqrt{48}}-2\sqrt{\sqrt{75}}-4\sqrt{15\sqrt{27}}.\)
\(=8\sqrt{5\sqrt{3}}+6\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}-12\sqrt{5\sqrt{3}}}\)
\(=0\)
b) \(F=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}.\)
Vì \(=\frac{5}{12}-\frac{1}{\sqrt{6}}=\frac{5-2\sqrt{6}}{12}=\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}\)
\(\frac{1}{\sqrt{3}}+\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}=\frac{2\sqrt{3}+\sqrt{2}}{6}\)
Nên \(F=\frac{2\sqrt{3}+\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}}=\frac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\frac{3\sqrt{3}}{6}=\frac{\sqrt{3}}{2}\)
a: \(=\dfrac{1}{2}\cdot4\sqrt{3}+4\cdot3\sqrt{3}-2\cdot6\sqrt{3}\)
\(=2\sqrt{3}+12\sqrt{3}-12\sqrt{3}=2\sqrt{3}\)
b: \(=\left|2-\sqrt{5}\right|-\sqrt{\left(3+\sqrt{5}\right)^2}\)
\(=\sqrt{5}-2-3-\sqrt{5}\)
=-5