K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(9x^2-x+\dfrac{1}{36}\)

\(=\left(3x\right)^2-2\cdot3x\cdot\dfrac{1}{6}+\left(\dfrac{1}{6}\right)^2\)

\(=\left(3x-\dfrac{1}{6}\right)^2\)

a: \(5x-20y=5\left(x-4y\right)\)

b: \(x^2+x^2y+x^2y^2=x^2\left(1+y+y^2\right)\)

c: \(x\left(x+y\right)-\left(5x+5y\right)=\left(x+y\right)\left(x-5\right)\)

d: \(5\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(y+5\right)\)

6 tháng 10 2021

\(A=27x^3+108x^2+144x+64\)

\(=\left(3x\right)^3+3.\left(3x\right)^2.4+3.3x.4^2+4^3\)

\(=\left(3x+4\right)^3=\left(3.32+4\right)^3=100^3=1000000\)

6 tháng 10 2021

A= (3x)+ 3.(3x)2.4 + 3.3x.42 + 43
A=(3x+4)3
biểu thức A tại x=32 là :
A=(3.32+4)3
A=1003
A=1000000
làm bài tốt nha !!!
 

13 tháng 8 2015

a)(x+1)^2

b)3x+y)^2

c)(5a-2b)^2

d)(x-1/2)^2

e)(3x-1)^2

1 tháng 11 2021

Câu 20:

Ta có:  \(\widehat{A}-\widehat{B}=40^0\Rightarrow\widehat{B}=\widehat{A}-40^0\)

\(\widehat{A}=2\widehat{C}\Rightarrow\widehat{C}=\frac{\widehat{A}}{2}\)

Vì AB//CD (gt) \(\Rightarrow\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)\(\Rightarrow\widehat{D}=180^0-\widehat{A}\)

Tứ giác ABCD \(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\Rightarrow\widehat{A}+\left(\widehat{A}-40^0\right)+\frac{\widehat{A}}{2}+\left(180^0-\widehat{A}\right)=360^0\)

Và đến đây bạn dễ dàng tìm được góc A và từ đó suy ra được góc D.

1 tháng 11 2021

Câu 29: Ta có: 

\(\hept{\begin{cases}xy+x+y=3\\yz+y+z=8\\xz+x+z=15\end{cases}}\Leftrightarrow\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}\Leftrightarrow}\hept{\begin{cases}x\left(y+1\right)+\left(y+1\right)=4\\y\left(z+1\right)+\left(z+1\right)=9\\x\left(z+1\right)+\left(z+1\right)=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)

Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\\z+1=c\end{cases}}\)với a,b,c > 1, khi đó ta có 

\(\hept{\begin{cases}ab=4\\bc=9\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}abbc=4.9\\c=\frac{9}{b}\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}16b^2=36\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b^2=\frac{36}{16}=\frac{9}{4}\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{3}{2}\\c=\frac{9}{\frac{3}{2}}=6\\a=\frac{16}{6}=\frac{8}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=a-1=\frac{8}{3}-1=\frac{5}{3}\\y=b-1=\frac{3}{2}-1=\frac{1}{2}\\z=c-1=6-1=5\end{cases}}\)

Vậy \(P=x+y+z=\frac{5}{3}+\frac{1}{2}+5=\frac{10+3+30}{6}=\frac{43}{6}\)

27 tháng 10 2021

\(=9x+6x^3+3x^2-9x=6x^3+3x^2\)

27 tháng 10 2021

= 9x + 3x2x2 + 3xx - 3x3

= 9x + 6x3 + 3x2 - 9x

= 6x3 + 3x2

1 tháng 3 2022

\(N=\left(x^2+9x+1\right)^2-6\left(3x-1\right)\left(x^2+9x+1\right)+9\left(3x-1\right)^2\)

\(=\left(x^2+9x+1-9x+3\right)^2=\left(x^2+4\right)^2\)

5 tháng 2 2022

e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)

\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)

\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)

\(\Leftrightarrow x=-1\left(TM\right)\)