K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

\(\sqrt{\left(8+\sqrt{15}\right)-\left(8-\sqrt{15}\right)}=\sqrt{8^2-\left(\sqrt{15}\right)^2}=\sqrt{64-15}=\sqrt{49}=7\)

29 tháng 12 2017

\(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{8-2\sqrt{3}}\)

\(=\sqrt{2}+\sqrt{3}+\sqrt{8-2\sqrt{3}}\)

Bước \(\sqrt{5+2\sqrt{6}}\) mình dùng hằng đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\) để tách ra. Nếu đúng bạn cho mình 1 đúng nhé =)

29 tháng 7 2021

câu đầu có \(3-12\sqrt{6}< 0\) nên không căn được nên đề bạn sai

\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{4^2-2.4.\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2.\sqrt{15}.3+3^2}\)

\(=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}=\left|4-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)

\(=4-\sqrt{15}+\sqrt{15}-3=1\)

\(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}=\sqrt{49-20\sqrt{6}}-\sqrt{49+20\sqrt{6}}\)

\(=\sqrt{5^2-2.5.2\sqrt{6}+\left(2\sqrt{6}\right)^2}-\sqrt{5^2+2.5.4\sqrt{6}+\left(2\sqrt{6}\right)^2}\)

\(=\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(5+2\sqrt{6}\right)^2}=\left|5-2\sqrt{6}\right|-\left|5+2\sqrt{6}\right|\)

\(=5-2\sqrt{6}-5-2\sqrt{6}=-4\sqrt{6}\)

\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=4-\sqrt{15}+\sqrt{15}-3\)

=1

22 tháng 10 2021

4: \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)

\(=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}\)

\(=2\sqrt{3}\)

22 tháng 10 2021

4) \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)

   \(=\sqrt{5}+\sqrt{3}-\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}\)

5) \(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}\)

   \(=\sqrt{2}+\sqrt{3}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

a. ĐKXĐ: $x\geq -9$

PT $\Leftrightarrow x+9=7^2=49$

$\Leftrightarrow x=40$ (tm)

b. ĐKXĐ: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$

$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$

$\Leftrgihtarrow 3\sqrt{2x+3}=15$

$\Leftrightarrow \sqrt{2x+3}=5$

$\Leftrightarrow 2x+3=25$

$\Leftrightarrow x=11$ (tm)

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

c.

PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{2}{3}\)

d. ĐKXĐ: $x\geq 1$

PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)

\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)

\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)

\(\Leftrightarrow -1=9\) (vô lý)

Vậy pt vô nghiệm.

 

26 tháng 6 2023

\(a,\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\\ =\sqrt{\sqrt{5^2}+2\sqrt{5}.\sqrt{3}+\sqrt{3^2}}-\sqrt{\sqrt{5^2}-2\sqrt{5}.\sqrt{3}+\sqrt{3^2}}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\\ =\left|\sqrt{5}+\sqrt{3}\right|-\left|\sqrt{5}-\sqrt{3}\right|\\ =\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}\\ =2\sqrt{3}\)

\(b,\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\\ =\sqrt{\sqrt{2^2}+2.\sqrt{3}.\sqrt{2}+\sqrt{3^2}}+\sqrt{\sqrt{2^2}-2.\sqrt{3}.\sqrt{2}+\sqrt{3^2}}\\ =\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\\ =\left|\sqrt{2}+\sqrt{3}\right|+\left|\sqrt{2}-\sqrt{3}\right|\\ =\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

26 tháng 6 2023

a) \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)

\(=\sqrt{5-2\cdot\sqrt{5\cdot3}+3}-\sqrt{5+2\cdot\sqrt{5\cdot3}+1}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

\(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)

\(=-2\sqrt{3}\)

b. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}-\sqrt{3-2\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{2}\)

25 tháng 9 2021

1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)

3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)

5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)

7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

31 tháng 8 2021

\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)

\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)

\(=3\sqrt{2}\)

31 tháng 8 2021

\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)

\(=\dfrac{3-\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\dfrac{3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}\)

\(=\dfrac{3}{2}\)