K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

Với n lẻ thì: \(^{a^n}\)\(^{b^n}\) = ( a+ b)*(\(^{a^{n-1}}\)\(^{a^{n-2}}\) * \(^{b+a^{n-3}}\) * \(^{b^2}\)-........-\(^{a\cdot b^{n2}}\)\(^{b^{n-1}}\))

hay:\(^{a^n}\)\(^{b^n}\) chia hết cho  a+b

\(^{1^n}\)\(^{2^n}\)+\(^{3^n}\) + \(^{4^n}\)= ( \(^{1^n}\)\(^{4^n}\)) +(\(^{2^n}\)\(^{3^n}\))

 Vậy với n lẻ \(^{1^n}\)\(^{4^n}\) và  \(^{2^n}\) + \(^{3^n}\) đều chia hết cho 5 nên N lẻ

29 tháng 3 2021

đặt a=1 n + 2 n + 3 n + 4 n

Nếu n=0 ⇒A=4( loại )

Nếu n=1 ⇒A=10( thỏa )

Nếu n>2 .

TH1 : n chẵn ⇒n=2k(k∈N)

⇒A=1+22k+32k+42k

=1+4k+9k+16k

Với k lẻ => k=2m+1

⇒A=1+42m+1+92m+1+162m+1

=1+16m.4+81m.9+256m.16

Dễ CM : A⋮̸5 vì A chia 5 dư 1 .

TH2: n lẻ => n=2h+1

⇒A=1+16h.4+81h.9+256h.16

TT như trên ; ta cũng CM được A không chia hết cho 5

Vậy n=1 thỏa mãn

23 tháng 9 2016

Ta có công thức:

a1+ a23 + a33 + ... = (a+ a2 + a3 + ...)2

=> 1+ 23 + 33 + 43 = (1 + 2 + 3 + 4)= 102 chia hết cho 5

=> n = 3

23 tháng 9 2016

cám ơn vì công thức

11 tháng 2 2018

 * n = 3k 
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7 

* n = 3k+1 
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1 

* n = 3k+2 
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3 

Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương) 

11 tháng 2 2018

câu thứ 2 đợi mình nghĩ đã nhé.

18 tháng 2 2016

Bạn hỏi câu này thiếu rất nhiều điều kiện: có rất nhiều sô  n để  sô đó chia hết cho 5

   vd :n=1;2;6......

Câu hỏi này 0 đúng chủ đề

13 tháng 11 2015

1,40 số

2,100008

3,10;12;15;30;60;

4,n=1;5

5,450;560;460;405;504;506;605;406;604

làm nốt đi