Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi x=16 thì \(A=\dfrac{6}{16-3\cdot4}=\dfrac{6}{4}=\dfrac{3}{2}\)
b: P=A:B
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{6}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)
c: \(P-1=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}}=\dfrac{3}{\sqrt{x}}>0\)
=>P>1
\(3\sqrt{x^2-4x+9}=3x-9\)
\(\Leftrightarrow x^2-4x+9=x^2-6x+9\)
\(\Leftrightarrow x=0\left(loại\right)\)
\(M=\left(\dfrac{3}{\sqrt{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt{x}-5}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{3\sqrt{x}-9+x+9}{x-9}:\dfrac{2\sqrt{x}-5-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+3\sqrt{x}}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-2}\)
\(=\dfrac{x\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{x}{\sqrt{x}-2}\)
omg tưởng chị lặn k on nữa chứ, thấy chị đổi ảnh bìa tưởng do máy e cập nhập muộn hóa ra chị on lại
Điều kiện: \(x\ge5\).
Phương trình tương đương với:
\(\sqrt{4\left(x-5\right)}+\dfrac{3\sqrt{x-5}}{\sqrt{9}}=3\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}=3\)
\(\Leftrightarrow\sqrt{x-5}=1\Rightarrow x-5=1\Leftrightarrow x=6\left(TM\right)\)
Vậy: Phương trình có tập nghiệm \(S=\left\{6\right\}\).
a, \(P=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3\sqrt{x}}{x-9}\)
\(\Rightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}+\dfrac{3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x-3\sqrt{x}+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\\ \Rightarrow P=\dfrac{x}{x-9}\)
b,Để P=2 \(\Leftrightarrow\dfrac{x}{x-9}=2\)
\(\Leftrightarrow x=2\left(x-9\right)\\ \Leftrightarrow x=2x-18\\ \Leftrightarrow x-18=0\\ \Leftrightarrow x=18\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}-\dfrac{3\sqrt{x}}{x+\sqrt{x}-2}\left(x\ge0\right)\\ A=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ A=\dfrac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ A=\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
Lần sau ghi đề rõ ra nha bạn
\(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{3\sqrt{x}-2}{x-4}\left(dkxd:x\ge0;x\ne4\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+\sqrt{x}-2+2x-4\sqrt{x}-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
\(\text{#}Toru\)
\(\dfrac{6}{x-3\sqrt{x}}\cdot\dfrac{6}{x-9}=\dfrac{6\cdot6}{\left(x-3\sqrt{x}\right)\left(x-9\right)}\)
\(=\dfrac{36}{\sqrt{x}\left(\sqrt{x}-3\right)^2\cdot\left(\sqrt{x}+3\right)}\)
\(\dfrac{6}{x-3\sqrt{x}}\cdot\dfrac{6}{x-9}\) (sửa đề)
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{36}{\sqrt{x}\left(\sqrt{x}-3\right)^2\left(\sqrt{x}+3\right)}\)