K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2023

\(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{3\sqrt{x}-2}{x-4}\left(dkxd:x\ge0;x\ne4\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+\sqrt{x}-2+2x-4\sqrt{x}-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

\(\text{#}Toru\)

a: Khi x=64 thì \(A=\dfrac{2}{8-2}=\dfrac{2}{6}=\dfrac{1}{3}\)

b: \(P=B:A\)

\(=\dfrac{3\sqrt{x}+\sqrt{x}-2-2\left(\sqrt{x}+2\right)}{x-4}:\dfrac{2}{\sqrt{x}-2}\)

\(=\dfrac{4\sqrt{x}-2-2\sqrt{x}-4}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{2\sqrt{x}-6}{2\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

c: P<0

=>căn x-3<0

=>0<=x<9

mà x nguyên và x<>4

nên \(x\in\left\{0;1;2;3;5;6;7;8\right\}\)

23 tháng 8 2021

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}-\dfrac{3\sqrt{x}}{x+\sqrt{x}-2}\left(x\ge0\right)\\ A=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ A=\dfrac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ A=\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

Lần sau ghi đề rõ ra nha bạn

a: Khi x=16 thì \(A=\dfrac{6}{16-3\cdot4}=\dfrac{6}{4}=\dfrac{3}{2}\)

b: P=A:B

\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{6}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)

c: \(P-1=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}}=\dfrac{3}{\sqrt{x}}>0\)

=>P>1

 

17 tháng 1 2022

a, \(P=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3\sqrt{x}}{x-9}\)

\(\Rightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)

\(\Rightarrow P=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}+\dfrac{3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)

\(\Rightarrow P=\dfrac{x-3\sqrt{x}+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)

\(\Rightarrow P=\dfrac{x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\\ \Rightarrow P=\dfrac{x}{x-9}\)

b,Để P=2 \(\Leftrightarrow\dfrac{x}{x-9}=2\)

\(\Leftrightarrow x=2\left(x-9\right)\\ \Leftrightarrow x=2x-18\\ \Leftrightarrow x-18=0\\ \Leftrightarrow x=18\)

b: 

ĐKXĐ: x>=4

\(5\sqrt{4x-16}-\dfrac{7}{3}\cdot\sqrt{9x-36}=36-3\sqrt{x-4}\)

=>\(5\cdot2\cdot\sqrt{x-4}-\dfrac{7}{3}\cdot3\cdot\sqrt{x-4}+3\sqrt{x-4}=36\)

=>\(6\sqrt{x-4}=36\)

=>\(\sqrt{x-4}=6\)

=>x-4=36

=>x=40

a: Khi x=121 thì \(A=\dfrac{121+3}{11+3}=\dfrac{124}{14}=\dfrac{62}{7}\)

b: \(B=\left(\dfrac{x+3\sqrt{x}-2}{x-9}-\dfrac{1}{\sqrt{x}+3}\right)\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{x+3\sqrt{x}-2-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}+3}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

 

c: P=A:B

\(=\dfrac{x+3}{\sqrt{x}+3}:\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{x+3}{\sqrt{x}+1}\)

\(=\dfrac{x-1+4}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{4}{\sqrt{x}+1}\)

\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}+1}-2>=2\cdot\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{4}{\sqrt{x}+1}}-2=2\cdot2-2=2\)

Dấu = xảy ra khi \(\left(\sqrt{x}+1\right)^2=4\)

=>\(\sqrt{x}+1=2\)

=>x=1(nhận)

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:
ĐKXĐ: $x\geq -2$

PT $\Leftrightarrow 2\sqrt{x+2}+3\sqrt{4}.\sqrt{x+2}-\sqrt{9}.\sqrt{x+2}=10$

$\Leftrightarrow 2\sqrt{x+2}+6\sqrt{x+2}-3\sqrt{x+2}=10$

$\Leftrightarrow 5\sqrt{x+2}=10$

$\Leftrightarrow \sqrt{x+2}=2$

$\Leftrightarrow x+2=4$

$\Leftrightarrow x=2$ (tm)