Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2x\left(x-3\right)-15+5x=0\\ \Rightarrow2x\left(x-3\right)-\left(15-5x\right)=0\\ \Rightarrow2x\left(x-3\right)-5\left(3-x\right)=0\\ \Rightarrow\left(2x+5\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)
b, \(x^3-7x=0\\ \Rightarrow x\left(x^2-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm7\end{matrix}\right.\)
c, \(\left(2x-3\right)^2-\left(x+5\right)^2=0\\ \Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\\ \Rightarrow\left(x-8\right)\left(3x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Xem lại đề câu d
Tìm x
a) Ta có: \(3\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)
\(\Leftrightarrow3\left(x-1-4x^2+4x\right)+4\left(3x^2+9x+2x+6\right)=38\)
\(\Leftrightarrow3\left(-4x^2+5x-1\right)+4\left(3x^2+11x+6\right)-38=0\)
\(\Leftrightarrow-12x^2+15x-3+12x^2+44x+24-38=0\)
\(\Leftrightarrow59x-17=0\)
\(\Leftrightarrow59x=17\)
hay \(x=\frac{17}{59}\)
Vậy: \(x=\frac{17}{59}\)
b) Ta có: \(5\left(2x+3\right)\left(x+2\right)-2\left(5x-4\right)\left(x-1\right)=75\)
\(\Leftrightarrow5\left(2x^2+4x+3x+6\right)-2\left(5x^2-5x-4x+4\right)-75=0\)
\(\Leftrightarrow5\left(2x^2+7x+6\right)-2\left(5x^2-9x+4\right)-75=0\)
\(\Leftrightarrow10x^2+35x+30-10x^2+18x-8-75=0\)
\(\Leftrightarrow53x-53=0\)
\(\Leftrightarrow53x=53\)
hay x=1
Vậy: x=1
c) Ta có: \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(\Leftrightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Leftrightarrow5x^2-3-5x^2-5x=0\)
\(\Leftrightarrow-3-5x=0\)
\(\Leftrightarrow-5x=-3\)
hay \(x=\frac{3}{5}\)
Vậy: \(x=\frac{3}{5}\)
d) Ta có: \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow-5x^2-2x+16+4x^2-4x-8+2x^2-8=0\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: \(x\in\left\{0;6\right\}\)
`5/(-x^2+5x-6)+(x+3)/(2-x)=0`
Đk:`x ne 2,x ne 3`
`pt<=>-5/(x^2-5x+6)-(x+3)/(x-2)=0`
`<=>-5-(x+3)(x-3)=0`
`<=>(x+3)(x-3)=-5`
`<=>x^2-9=-5`
`<=>x^2-4=0`
`<=>(x-2)(x+2)=0`
`x ne 2=>x-2 ne 0`
`<=>x+2=0`
`<=>x=-2`
Vậy `S={-2}`
a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\) (1)
\(\Leftrightarrow6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)=16\)
\(\Leftrightarrow6x^2+21x-2x-7-\left(6x^2+x-5\right)=16\)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2-x+5=16\)
\(\Leftrightarrow18x-2=16\)
\(\Leftrightarrow18x=16+2\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=1\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{1\right\}\)
b) \(\left(10x+9\right)\cdot x-\left(5x-1\right)\left(2x+3\right)=8\) (2)
\(\Leftrightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)
\(\Leftrightarrow10x^2+9x-\left(10x^2+13x-3\right)=8\)
\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)
\(\Leftrightarrow-4x+3=8\)
\(\Leftrightarrow-4x=8-3\)
\(\Leftrightarrow-4x=5\)
\(\Leftrightarrow x=-\dfrac{5}{4}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{5}{4}\right\}\)
c) \(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\) (3)
\(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
\(\Leftrightarrow42x-41=0\)
\(\Leftrightarrow42x=41\)
\(\Leftrightarrow x=\dfrac{41}{42}\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{41}{42}\right\}\)
d) \(x\left(x+1\right)\left(x+6\right)-x^3=5x\) (4)
\(\Leftrightarrow\left(x^2+x\right)\left(x+6\right)-x^3=5x\)
\(\Leftrightarrow x^3+6x^2+x^2+6x-x^3=5x\)
\(\Leftrightarrow7x^2+6x=5x\)
\(\Leftrightarrow7x^2+6x-5x=0\)
\(\Leftrightarrow7x^2+x=0\)
\(\Leftrightarrow x\left(7x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\7x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{7}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (4) là \(S=\left\{-\dfrac{1}{7};0\right\}\)
a)\(5x\left(x-3\right)-4x\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow5x^2-15x-4x^2-4x=x^2-4\)
\(\Leftrightarrow x^2-19x-x^2+4=0\)
\(\Leftrightarrow4-19x=0\Leftrightarrow19x=4\Leftrightarrow x=\dfrac{4}{19}\)
b)\(3x\left(x-5\right)+\left(2x+1\right)\left(x-3\right)=5x\left(x-1\right)\)
\(\Leftrightarrow3x^2-15x+2x^2-5x-3=5x^2-5x\)
\(\Leftrightarrow5x^2-20x-3-5x^2+5x=0\)
\(\Leftrightarrow-15x-3=0\)\(\Leftrightarrow-15x=3\Leftrightarrow x=-\dfrac{1}{5}\)
a, \(5x\left(x-3\right)-4x\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow5x^2-15x-4x^2-4x=x^2-4\)
\(\Leftrightarrow x^2-19x=x^2-4\)
\(\Leftrightarrow19x=4\)
\(\Leftrightarrow x=\dfrac{4}{19}\)
Vậy...
b, \(3x\left(x-5\right)+\left(2x+1\right)\left(x-3\right)=5x\left(x-1\right)\)
\(\Leftrightarrow3x^2-15x+2x^2-6x+x-3=5x^2-5x\)
\(\Leftrightarrow5x^2-20x-3=5x^2-5x\)
\(\Leftrightarrow-20x-3=-5x\)
\(\Leftrightarrow-15x=3\)
\(\Leftrightarrow x=\dfrac{-1}{5}\)
Vậy...
Không có câu hỏi à
Tính (Rút gọn)