Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)
\(a,\frac{21}{36}.\frac{5}{2}-\frac{7}{12}.\frac{2}{7}+\left(2018-2019\right)^0\)
=\(\frac{7}{12}.\frac{5}{2}-\frac{7}{12}.\frac{2}{7}+\left(-1\right)\)
= \(\frac{7}{12}.\left(\frac{5}{2}+\frac{2}{7}\right)+\left(-1\right)\)
=\(\frac{7}{12}.\frac{39}{14}+\left(-1\right)\)
=\(\frac{13}{8}+\left(-1\right)\)
= \(\frac{5}{8}\)
\(b,-12\frac{1}{3}-\frac{5}{7}+7\frac{1}{3}+1\frac{5}{7}+1^{2019}\)
=\(-\frac{37}{3}+\frac{-5}{7}+\frac{22}{3}+\frac{12}{7}+1\)
=\(\left(\frac{-37+22}{3}\right)+\left(\frac{-5+12}{7}\right)+=1\)
= \(-5+1+1\)
=\(-3\)
=> (7+x).(3+x2)=0
TH1:
7+x=0
x=0-7
x=-7
TH2: 3+x2=0
=> \(x\in\)0
Vậy x=-7
4a) \(\frac{-2}{3}x=\frac{3}{10}-\frac{1}{5}=\frac{1}{10}\)
\(\Leftrightarrow x=\frac{1}{10}:\frac{-2}{3}=\frac{1}{10}.\frac{3}{-2}=\frac{3}{-20}\)
Vậy x=\(\frac{3}{-20}\)
b) \(\frac{2}{3}x-\frac{3}{2}x=\frac{5}{12}\)
\(\Leftrightarrow\left(\frac{2}{3}-\frac{3}{2}\right)x=\frac{5}{12}\)
\(\Leftrightarrow\frac{-5}{6}x=\frac{5}{12}\)
\(\Leftrightarrow x=\frac{5}{12}:\frac{-5}{6}=\frac{5}{12}.\frac{6}{-5}=\frac{1}{-2}\)
Vậy x=\(\frac{1}{-2}\)
g)Sửa đề: \(\left|4x-1\right|=\left(-3\right)^2\)
\(\Leftrightarrow\left|4x-1\right|=9\)
\(\Rightarrow\left[{}\begin{matrix}4x-1=9\\4x-1=\left(-9\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5}{2};-2\right\}\)
i) \(\left(x-1^3\right)=125\)
\(\Leftrightarrow x-1=125\)
\(\Leftrightarrow x=125+1=126\)
Vậy x=126
k) \(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
\(\frac{1}{4}.x+\frac{3}{4}.\left(x+1\right)=0\)
\(\Rightarrow\frac{1}{4}.x+\frac{1}{4}.3.\left(x+1\right)=0\)
\(\Rightarrow\frac{1}{4}.\left[x+3.\left(x+1\right)\right]=0\)
\(\Rightarrow x+3.\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\3\left(x+1\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Chúc bạn học tốt !!!
G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)
=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)
=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)
=> G = \(\frac{2.50}{1.51}\)
=> G = \(\frac{100}{51}\)
a/\(5x\cdot\left(x-\frac{1}{3}\right)=0\)
Chia làm 2 TH :
TH 1: \(5x=0\Rightarrow x=0\)
TH 2:\(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)
\(\Rightarrow x\in\left\{0;\frac{1}{3}\right\}\)
b/\(\left(x+\frac{1}{4}\right)\cdot\left(x-\frac{3}{7}\right)=0\)
Chia làm 2 Th
Th1 : \(x+\frac{1}{4}=0\Rightarrow x=-\frac{1}{4}\)
Th2 :\(x-\frac{3}{7}=0\Rightarrow x=\frac{3}{7}\)
\(\Rightarrow x\in\left\{-\frac{1}{4};\frac{3}{7}\right\}\)
1) \(5x\left(x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x=0\\x-\frac{1}{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
2) \(\left(x+\frac{1}{4}\right)\left(x-\frac{3}{7}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=0\\x-\frac{3}{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{3}{7}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{3}{7}\end{cases}}\)