K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

Thiếu điều kiện x,y\(\in N\)

\(5^x+9999=20y\)\(\Rightarrow9999=20y-5^x\)

Nếu x>0 thì \(5^x⋮5\Rightarrow20y-5^x⋮5\) mà 9999 không chia hết cho 5(vô lí)

Nếu x=0 thì \(9999+5^0=20y\Rightarrow20y=10000\Rightarrow y=500\)

Vậy x=0,y=500 thỏa mãn

15 tháng 9 2018

sai rui

23 tháng 6 2018

có phải là 9998 số 2 ko bạn

23 tháng 6 2018

ta có

(9998-2) : 2 =4998 ( số )

24 tháng 12 2017

^ là dấu gì vậy bạn?

30 tháng 12 2017

Theo đề bài ta có:

5x + 9999 = 2y

Mà 2y \(⋮\) 2

\(\Rightarrow\) 2y tận cùng là chẵn

\(\Rightarrow\) 5x có tận cùng là 5 vì ....5 + 9999 = ......6 ( tận cùng là 6 )

\(\Rightarrow\) 2y = ....6 : 2 = .....3

Vậy x \(\in\) { 1;2;3;.......} ; y \(\in\) { 3;13;....... }

4 tháng 5 2017

\(\frac{3}{4}\)*\(\frac{8}{9}\)*\(\frac{15}{16}\)********\(\frac{9999}{10000}\)

\(\frac{1\cdot3}{2^2}\)*\(\frac{2\cdot4}{3^2}\)********\(\frac{99\cdot101}{100^2}\)

\(\frac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\)\(\frac{3\cdot4\cdot5\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot100}\)

\(\frac{1}{100}\)*\(\frac{101}{2}\)=\(\frac{101}{200}\)

4 tháng 5 2017

Ta có: A = \(\frac{3}{8}\)\(\frac{8}{9}\).\(\frac{15}{16}\). ... .\(\frac{9999}{10000}\)
\(\Rightarrow\) A = \(\frac{1.3}{2^2}\).\(\frac{2.4}{3^2}\)\(\frac{3.5}{4^2}\). ... . \(\frac{99.101}{100^2}\)
\(\Rightarrow\) A = \(\frac{1.111}{2.100}\)\(\frac{111}{200}\)
Vậy: A = \(\frac{111}{200}\).

7 tháng 8 2017

ta có:

\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)....\left(1+\frac{1}{9999}\right)\)

\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{10000}{9999}=\frac{2^2}{1.3}.\frac{3^2}{2.4}....\frac{100^2}{99.101}\)

\(A=\frac{\left(2.3.4.5....100\right)}{1.2.3.4....99}.\frac{\left(2.3.4...100\right)}{3.4.5..101}\)

\(A=\frac{100}{1}.\frac{2}{101}=\frac{200}{101}< \frac{202}{101}=2\)

\(\Rightarrow A< 2\)

7 tháng 8 2017

nếu đúng k giúp mình nhé

5 tháng 3 2018

Đặt \(A=\frac{3}{4}+\frac{8}{9}+..........+\frac{9999}{10000}\)

\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+..........+\left(1-\frac{1}{10000}\right)\)

\(=1-\frac{1}{2^2}+1-\frac{1}{3^2}+...........+1-\frac{1}{100^2}\)

\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{100^2}\right)\)\(>99-\left(\frac{1}{1.2}+\frac{1}{2.3}+..........+\frac{1}{99.100}\right)\)

\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{99}-\frac{1}{100}\right)\)

\(=99-\left(1-\frac{1}{100}\right)=99-1+\frac{1}{100}=98+\frac{1}{100}>98\)

5 tháng 3 2018

=1-1/4+1-1/9+1-1/16+...+1-1/10000

=(1+1+1+...+1)+(-1/4-1/9-1/16-...-1/10000)

=99+(-1/4-1/9-1/16-...-1/10000)

Vì 99+(-1/4-1/9-1/16-...-1/10000)>98

=>3/4 + 8/9 + 15/16 + ... + 9999/10000>98

Vây 3/4 + 8/9 + 15/16 + ... + 9999/10000 >98