Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\)
Tương tự cũng có 2 BĐT tương tự:
\(y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)
Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(y-z\right)^2\ge0\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)
Cộng theo vế 2 BĐT (1) và (2) có:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\Leftrightarrow x^2+y^2+z^2\ge3\)
Xảy ra khi \(x=y=z=1\)
Lớp 9 gì mà hs lớp 7 làm đc :)) ahaha
Áp dụng bất đẳng thức Cauchy ta có :
\(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\)
\(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2zx\)
Cộng vế với vế ta được :
\(3x^2+3y^2+3z^2+3\ge x+y+z+xy+xz+yz\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge6\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{6-3}{3}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Vậy \(x^2+y^2+z^2\) có GTNN là 1 tại \(x=y=z=1\)
1/x+1/y=1/2 <=> (x+y)/xy=1/2 <=>[(\(\sqrt{x}+\sqrt{y}\))2-2\(\sqrt{xy}\)]/xy=1/2 <=>(\(\sqrt{x}+\sqrt{y}\))2=xy/2+2\(\sqrt{xy}\)=A2
1/2=1/x+1/y\(\ge\)2/\(\sqrt{xy}\)(bdt cosi cho 1/x và 1/y) <=>1/2 \(\ge\frac{2}{\sqrt{xy}}\)<=> \(\sqrt{xy}\ge\)4
Vậy A2\(\ge\)42/2+2.4=16 <=> A\(\ge\)4( vì A >0)
Dấu = xảy ra khi 1/x=1/y và \(\sqrt{xy}=4\)=> x=y=4
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2\ge\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2\)
=> \(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2\le1\)
=> \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\le1\)
=> \(1\ge\frac{1^2}{\sqrt{x}}+\frac{1^2}{\sqrt{y}}\ge\frac{\left(1+1\right)^2}{\sqrt{x}+\sqrt{y}}=\frac{4}{\sqrt{x}+\sqrt{y}}\)
=> \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{y}}\\\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\end{cases}}\Leftrightarrow x=y=4\)
Vậy min A = 4 đạt tại x = y= 4.
cănx thôi hay căn (x(2+y))
x=1/4
y=1/2