Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ....
\(\Leftrightarrow2x=\left(x+1\right)\sqrt{3x+1}+x+1\)
\(\Leftrightarrow\left(x+1\right)\sqrt{3x+1}-x+1=0\)
Đặt \(\sqrt{3x+1}=a\ge0\Rightarrow x=\frac{a^2-1}{3}\)
\(\left(\frac{a^2-1}{3}+1\right)a-\frac{a^2-1}{3}+1=0\)
\(\Leftrightarrow a^3-a^2+2a+4=0\)
\(\Leftrightarrow\left(a+1\right)\left(a^2+2a+4\right)=0\)
\(\Rightarrow a=-1\left(l\right)\)
Vậy pt vô nghiệm
Đặt vế trái biểu thức là P
- Nếu một trong các số bằng 0 thì biểu thức vô nghĩa
- Nếu một trong các số bằng 1 thì vế trái lớn hơn 1 nên đẳng thức ko xảy ra
- Nếu tất cả các số đều lớn hơn 1, không mất tính tổng quát, giả sử \(a_1< a_2< ...< a_n\)
\(\Rightarrow a_1\ge2;a_2\ge3;...;a_n\ge n+1\)
\(\Rightarrow P=\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_n^2}\le\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{\left(n+1\right)^2}\)
\(\Rightarrow P< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)
\(\Rightarrow P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}< 1\)
\(\Rightarrow\) Không thể tồn tại đẳng thức \(P=1\)
Lời giải:
a)
$x\geq 1$ thì $y=-x-11$
$1> x\geq -2$ thì $y=-7x-5$
$x< -2$ thì $y=x+11$
Đồ thị:
b) Biện luận PT $3|x-1|-4|x+2|=m(*)$
Điểm ở đỉnh là giao của $y=x+11$ và $y=-7x-5$. Ta dễ dàng xác định được điểm đó có tọa độ $(-2; 9)$
Do đó:
Nếu $m>9$ thì PT $(*)$ vô nghiệm.
Nếu $m=9$ thì PT $(*)$ có 1 nghiệm duy nhất.
Nếu $m< 9$ thì PT $(*)$ có 2 nghiệm phân biệt
ĐK: \(-x^2+2x+\frac{1}{2}-m\ge0\)
\(pt\Leftrightarrow\left[{}\begin{matrix}4x-2m-\frac{1}{2}>-x^2+2x+\frac{1}{2}-m\\4x-2m-\frac{1}{2}< x^2-2x-\frac{1}{2}+m\end{matrix}\right.\)
Xét từng bpt một nhé:
\(x^2+2x-1-m>0\) (1)
Để (1) đúng với mọi x thì \(\Delta< 0\Leftrightarrow1+1+m< 0\Leftrightarrow m< -2\)
\(x^2-6x+3m>0\) (2)
Để (2) đúng với mọi x thì \(\Delta< 0\Leftrightarrow9-3m< 0\Leftrightarrow m>3\)
\(\Rightarrow\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)
\(\Rightarrow S=\left(-2019;-2\right)\cup\left(3;2019\right)\)
Tự đếm xem có bao nhiêu phần tử nha cậu :))
ĐKXĐ: ...
\(\Leftrightarrow5x+9=x+5+4\sqrt{x+1}\)
\(\Leftrightarrow x+1=\sqrt{x+1}\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Đặt \(A=5\cdot7^{2\left(n+1\right)}+2^{3n}=5\cdot49^{n+1}+8^n=5\left(41+8\right)^{n+1}+8^n\)
Áp dụng công thức nhị thức Newton, ta có:
\(\left(41+8\right)^{n+1}=41^{n+1}+\left(n+1\right)\cdot41^n\cdot8+\dfrac{n\left(n+1\right)}{2}\cdot41^{n-1}\cdot8^2+...+\left(n+1\right)\cdot41\cdot8^n+8^{n+1}\)
Vậy \(A=5\left[41^{n+1}+\left(n+1\right)\cdot41^n\cdot8+..+\left(n+1\right)\cdot41\cdot8^n+8^{n+1}\right]+8^n\)
\(\Rightarrow A=5\left[41^{n+1}\left(n+1\right)\cdot41^n\cdot8+...+\left(n+1\right)\cdot41\cdot8^n\right]+5\cdot8^{n+1}+8^n\)
Đặt \(B=41^{n+1}\left(n+1\right)\cdot41^n\cdot8+...+\left(n+1\right)\cdot41\cdot8^n\)
\(\Rightarrow B⋮41\)
Đặt \(C=5\cdot8^{n+1}+8^n=8^n\left(5\cdot8+1\right)=8^n\cdot41\)
\(\Rightarrow C⋮41\)
Mà \(A=B+C\Rightarrow A⋮41\)
\(\RightarrowĐPCM\)