K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

   4x(x+y)(x+y+z)(x+z) + y^2.z^2

= 4(x^2 + xy + xz)( x^2 + xy + xz + yz) + y^2.z^2

Đặt x^2 + yz + xz = t

=>  4x(x+y)(x+y+z)(x+z) + y^2.z^2 = 4t( t + yz) + y^2.z^2 = 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0(ĐPCM)

Vậy 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0 với moji x,y,z

18 tháng 10 2020

\(\ge\)bao nhiêu

18 tháng 10 2020

Ta có: \(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=4\left[x\left(x+y+z\right)\right]\left[\left(x+y\right)\left(x+z\right)\right]+y^2z^2\)

\(=4\left(x^2+xy+zx\right)\left(x^2+xy+yz+zx\right)+y^2z^2\) \(\left(1\right)\)

Đặt \(\hept{\begin{cases}x^2+xy+zx=a\\yz=b\end{cases}}\)

Khi đó: \(\left(1\right)=4a\left(a+b\right)+b^2\)

\(=4a^2+4ab+b^2\)

\(=\left(2a+b\right)^2\)

\(=\left(2x^2+2xy+2zx+yz\right)^2\ge0\left(\forall x,y,z\right)\)

=> đpcm

18 tháng 10 2020

Ta có:\(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+yz+zx\right)+y^2z^2\)Đặt \(x^2+xy+xz=t\)thì biểu thức trên trở thành \(4t\left(t+yz\right)+y^2z^2=4t^2+4yzt+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\forall x,y,z\left(đpcm\right)\)

15 tháng 8 2018

Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)

Đặt x2+xy+xz=t, ta có:

\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)

15 tháng 8 2018

ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)

không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .

25 tháng 3 2018

e cunho tui ko ba

5 tháng 7 2017

1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz

= x2y+xy2+y2z+yz2+x2z+xz2+2xyz

=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)

=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)

=(xy+xz+yz+z2).(x+y)

=(x(y+z)+z(y+z)).(x+y)

=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)

2. 3(x-3)(x-7)+(x-4)2+48

=3(x2+4x-21)+x2-8x+16+48

=4x2-4x+1 = (2x-1)2

Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0

3, x2-6x+10

= x2-2.3.x+9+1

=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)>=0 với mọi x)

=> x26x+10 >0 với mọi x

4x-x2-5

=-(x2-4x+5)

=- (x2-2.2x+4+1)

= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)

vậy, 4x-x2-5<0 với mọi x

5 tháng 7 2017

Ta có : x2 - 6x + 10 

= x2 - 6x + 9 + 1 

= (x - 3)2 + 1

Mà (x - 3)2 \(\ge0\forall x\)

Nên : (x - 3)2 + 1 \(\ge1\forall x\)

=> (x - 3)2 + 1 \(>0\)(đpcm)

4 tháng 9 2016

Đặt \(P=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(P=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(=x^4\left(y-z\right)+y^4z-y^4x+z^4x-z^4y\)

\(=x^4\left(y-z\right)+y^4z-z^4y-y^4x+z^4x\)

\(=x^4\left(y-z\right)+yz\left(y^3-z^3\right)-x\left(y^4-z^4\right)\)

\(=x^4\left(y-z\right)+yz\left(y-z\right)\left(y^2+yz+z^2\right)-x\left(y-z\right)\left(y^3+y^2z+yz^2+z^3\right)\)

\(=\left(y-z\right)\left[x^4+yz\left(y^2+yz+z^2\right)-x\left(y^3+y^2z+yz^2+z^3\right)\right]\)

\(=\left(y-z\right)\left(x^4+y^3z+y^2z^2+yz^3-xy^3-xy^2z-xyz^2-xz^3\right)\)

\(=\left(y-z\right)\left(x^4-xz^3-xy^3+y^3z-xy^2z+y^2z^2-xyz^2+yz^3\right)\)

\(=\left(y-z\right)\left[x\left(x^3-z^3\right)-y^3\left(x-z\right)-y^2z\left(x-z\right)-yz^2\left(x-z\right)\right]\)

\(=\left(y-z\right)\left[x\left(x-z\right)\left(x^2+xz+z^2\right)-y^3\left(x-z\right)-y^2z\left(x-z\right)-yz^2\left(x-z\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left[x\left(x^2+xz+z^2\right)-y^3-y^2z-yz^2\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x^3+x^2z+xz^2-y^3-y^2z-yz^2\right)\)

\(=\left(y-z\right)\left(x-z\right)\left(x^3-y^3+x^2z-y^2z+xz^2-yz^2\right)\)

\(=\left(y-z\right)\left(x-z\right)\left[\left(x-y\right)\left(x^2+xy+y^2\right)+z\left(x^2-y^2\right)+z^2\left(x-y\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left[\left(x-y\right)\left(x^2+xy+y^2\right)+z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left[x^2+xy+y^2+z\left(x+y\right)+z^2\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left(x^2+xy+y^2+xz+yz+z^2\right)\)

Đặt \(A=x^2+xy+y^2+xz+yz+z^2\)

\(A=\frac{2\left(x^2+xy+y^2+xz+yz+z^2\right)}{2}=\frac{2x^2+2xy+2y^2+2xz+2yz+2z^2}{2}\)

\(=\frac{\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)}{2}\)

\(=\frac{\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2}{2}\)

=>\(P=\left(y-z\right)\left(x-z\right)\left(x-y\right).\frac{\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2}{2}\)

Ta có: \(x>y>z< =>\hept{\begin{cases}x>y\\y>z\\x>z\end{cases}}< =>\hept{\begin{cases}x-y>0\\y-z>0\\x-z>0\end{cases}}\)

Dễ thấy \(\left(x+y\right)^2\ge0;\left(y+z\right)^2\ge0;\left(x+z\right)^2\ge0\) với mọi x;y;z

\(=>P>0\) (đpcm)