Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(4x=6y=8z\)
⇒ \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Đặt \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=k\)
⇒ \(\left\{{}\begin{matrix}x=6k\\y=4k\\z=3k\end{matrix}\right.\)
⇒ \(x-y=z=2k\)
⇒ \(3k=2k\)
=> k = 0
=> \(x=y=z=0\)
Đề có sai hog ta? tại thử áp dụng r cũng ra vậy à :v
Theo bài ra ta có:
\(4x=6y=8z\)và \(x-y=2\)
\(\Rightarrow4x.\frac{1}{24}=6y.\frac{1}{24}=8z.\frac{1}{24}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{6-4}=\frac{2}{2}=1\)
\(\Rightarrow\hept{\begin{cases}x=1.6=6\\y=1.4=4\\z=1.3=3\end{cases}}\)
VẬY \(\hept{\begin{cases}x=6\\y=4\\z=3\end{cases}}\)
\(4x=3y=8z\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{2z}{3}\Rightarrow\frac{2x}{6}=\frac{2y}{8}=\frac{2z}{3}=\frac{2\left(x+y+z\right)}{6+8+3}=\frac{110}{17}\)
Từ đó suy ra x, y, z
\(4x=3y=8z\Rightarrow\frac{4x}{24}=\frac{3y}{24}=\frac{8z}{24}\Leftrightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{3}=\frac{x+y-z}{6+8-3}=\frac{55}{11}=5\)
\(\Rightarrow\hept{\begin{cases}x=6.5=30\\y=8.5=40\\z=3.5=15\end{cases}}\)
Ta có \(\dfrac{2x-3}{5}=\dfrac{3y+2}{7}=\dfrac{z-1}{3}=\dfrac{4x-6}{10}=\dfrac{6y+4}{14}=\dfrac{7z-7}{21}\)
Áp dụng t/c dtsbn:
\(\dfrac{4x-6}{10}=\dfrac{6y+4}{14}=\dfrac{7z-7}{21}=\dfrac{\left(4x-6y+7z\right)-6-4-7}{10-14+21}=\dfrac{68-17}{17}=3\\ \Rightarrow\left\{{}\begin{matrix}2x-3=15\\3y+2=21\\z-1=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=9\\y=\dfrac{19}{3}\\z=10\end{matrix}\right.\)
BCNN(4;6;8)=24
=> 4x/24=6y/24=8z/24
=>x/6=y/4=z/3
áp dụng... ta đc:
x/6=y/4=z/3=x+y+z/6+4+3=13/13=1
=> x=6
y=4
z=3