Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(15-x=\sqrt{72}\)
\(\Leftrightarrow15-x=\sqrt{36\times2}\)
\(\Leftrightarrow15-x=\sqrt{36}\times\sqrt{2}\)
\(\Leftrightarrow15-x=6\sqrt{2}\)
\(\Leftrightarrow x=15-6\sqrt{2}\)
a) \(\left|x-\frac{1}{2}\right|-\sqrt{\frac{1}{9}}=\sqrt{\frac{1}{4}}\)
\(\Rightarrow\left|x-\frac{1}{2}\right|-\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow\left|x-\frac{1}{2}\right|=\frac{1}{2}+\frac{1}{3}\)
\(\Rightarrow\left|x-\frac{1}{2}\right|=\frac{5}{6}.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{2}=\frac{5}{6}\\x-\frac{1}{2}=-\frac{5}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{6}+\frac{1}{2}\\x=\left(-\frac{5}{6}\right)+\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{4}{3};-\frac{1}{3}\right\}.\)
b) \(3^{x+2}-3^x=72\)
\(\Rightarrow3^x.3^2-3^x.1=72\)
\(\Rightarrow3^x.\left(3^2-1\right)=72\)
\(\Rightarrow3^x.8=72\)
\(\Rightarrow3^x=72:8\)
\(\Rightarrow3^x=9\)
\(\Rightarrow3^x=3^2\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
Chúc bạn học tốt!
\(72^{45}>72^{44}\)
\(\Rightarrow72^{45}-72^{43}>72^{44}-72^{43}\)
Vậy...
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}\)\(=\sqrt{1.2}+\sqrt{2.3}+\sqrt{3.4}+...+\sqrt{10.11}\)
\(< \frac{1+2}{2}+\frac{2+3}{2}+\frac{3+4}{2}+...+\frac{10+11}{2}\)\(=\frac{1}{2}\left[\left(1+2+3+...+10\right)+\left(2+3+4+...+11\right)\right]\)\(=\frac{1}{2}\left(\frac{11.10}{2}+\frac{13.10}{2}\right)=\frac{1}{2}\left(55+65\right)=60\)
Vậy \(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}< 60.\)
\(\sqrt{14+\sqrt{16900}}-\sqrt{19+\sqrt{900}}+\sqrt{45+\sqrt{3025}}\)
\(=\sqrt{14+\sqrt{130^2}}-\sqrt{19+\sqrt{30^2}}+\sqrt{45+\sqrt{55^2}}\)
\(=\sqrt{14+130}-\sqrt{19+30}+\sqrt{45+55}\)
\(=\sqrt{144}-\sqrt{49}+\sqrt{100}\)
\(=\sqrt{12^2}-\sqrt{7^2}+\sqrt{10^2}\)
\(=12-7+10\)
\(=5+10\)
\(=15\)
\(\frac{45}{78}+\frac{72}{88}+\frac{93}{55}\)
=\(\frac{15}{26}+\frac{9}{11}+\frac{93}{55}\)
=\(\frac{15}{26}+\frac{138}{55}\)
=\(\frac{4413}{1430}\)
\(45+x=\sqrt{72}\)
\(\Rightarrow45+x=\sqrt{36\times2}\)
\(\Rightarrow45+x=\sqrt{36}\times\sqrt{2}\)
\(\Rightarrow45+x=6\sqrt{2}\)
\(\Rightarrow x=6\sqrt{2}-45\)