K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

\(\dfrac{\left(3x+2y\right)^3+9x^2+12xy+y^2}{12x+8y}\)

\(=\dfrac{\left(3x+2y\right)^3+\left(3x+2y\right)^2}{4\left(3x+2y\right)}\)

\(=\dfrac{\left(3x+2y\right)^2+3x+2y}{4}\)

22 tháng 7 2023

\(...=A=x^3-3x^2+3x-1+1013\)

\(A=\left(x-1\right)^3+1013=\left(11-1\right)^3+1013=1000+1013=2013\)

\(...B=x^3-6x^2+12x-8-100\)

\(B=\left(x-2\right)^3-100=\left(12-2\right)^3-100=1000-100=900\)

\(...C=\left(x-2y\right)^3=\left(-2y-2y\right)^3=\left(-4y\right)^3=-64y^3\)

\(...D=x^3+9x^2+27x+9+2018\)

\(D=\left(x+3\right)^3+2018=\left(-23+3\right)^3+2018=-8000+2018=-5982\)

22 tháng 7 2023

a) \(A=x^3-3x^2+3x+1012\)

\(A=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1+1013\)

\(A=\left(x-1\right)^3+1013\)

Thay x=11 vào A ta có:

\(A=\left(11-1\right)^3+1013=10^3+1013=1000+1013=2013\)

b) \(B=x^3-6x^2+12x-108\)

\(B=x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-8-100\)

\(B=\left(x-2\right)^3-100\)

Thay x=12 vào B ta có:

\(B=\left(12-2\right)^3-100=10^3-100=1000-100=900\)

c) \(C=x^3+6x^2y+12xy^2+8y^3\)

\(C=x^3+3\cdot2y\cdot x^2+3\cdot\left(2y\right)^2\cdot x+\left(2y\right)^3\)

\(C=\left(x+2y\right)^3\)

Thay x=-2y vào C ta được:

\(C=\left(-2y+2y\right)^3=0^3=0\)

d) \(D=x^3+9x^2+27x+2027\)

\(D=x^3+3\cdot3\cdot x^2+3\cdot3^2\cdot x+27+2000\)

\(D=\left(x+3\right)^3+2000\)

Thay x=-23 vào D ta có:

\(D=\left(-23+3\right)^3+2000=\left(-20\right)^3+2000=-8000+2000=-6000\)

15 tháng 10 2019

a) Kết quả bằng 3.           b) Kết quả bằng  1 2

a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)

b: =(1-2x)(1+2x)

c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)

d: =(x+3)^3

e: \(=\left(2x-y\right)^3\)

f: =(x+2y)(x^2-2xy+4y^2)

3 tháng 8 2018

13 

25

234

81 

316

 nhớ cho mình 1 k

25 tháng 12 2021

\(12x-9-4x^2=-\left(2x-3\right)^2\\ Sửa:x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)

21 tháng 7 2021

Trả lời:

Ta có: ( x - 2y )3 = x3 - 3.x2.2y + 3.x.( 2y )2 - ( 2y )3 = x3 - 6x2y + 12xy2 - 8y3 ( HĐT thứ 5 - lập phương của 1 hiệu )

=> Chọn b

21 tháng 7 2021

chọn đáp án đúng và giải thick ra nhé

12 tháng 10 2019

\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)

    \(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)

    \(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)

\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)

    \(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)

    \(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).