Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
a, \(\dfrac{x^3+27}{x^2-3x+9}=\dfrac{x+3}{M}\Leftrightarrow\dfrac{\left(x+3\right)\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{x+3}{M}\)
\(\Rightarrow M=\dfrac{x+3}{x+3}=1\)
b, \(\dfrac{M}{x+4}=\dfrac{x^2-8x+16}{16-x^2}=\dfrac{\left(x-4\right)^2}{\left(4-x\right)\left(x+4\right)}=\dfrac{4-x}{x+4}\)
\(\Rightarrow M=\dfrac{\left(4-x\right)\left(x+4\right)}{x+4}=4-x\)
c, tương tự
\(\left(3x+1\right)^2-x^2+8x-16=0\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(3x+1+x-4\right)\left(3x+1-x+4\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-5}{2}\end{cases}}\)
\(\left(3x+1\right)^2-x^2+8x-16=0\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(3x+1+x-4\right)\left(3x+1-x+4\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-5}{2}\end{cases}}\)
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
\(a,=\left(x+4\right)^2\\ b,=\left(x-6\right)^2\\ c,=-\left(4x^2-4x+1\right)=-\left(2x-1\right)^2\\ d,=\left(x-1\right)^3\)
<=> \(\frac{7}{8x}+\frac{5-x}{4x\left(x-2\right)}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)(DK: x khác 0 và 2)
<=>\(\frac{7x\left(x-2\right)}{8x\left(x-2\right)}+\frac{10-2x}{8x\left(x-2\right)}=\frac{4x-4}{8x\left(x-2\right)}=\frac{x}{8x\left(x-2\right)}\)
<=>\(7x^2-14x+10-2x=4x-4+x\)
<=>\(7x^2-14x-2x-4x-x=-4-10\)
<=>\(7x^2-21x+14=0\)
<=>\(7\left(x^2-3x+2\right)=0\)
<=>\(x^2-3x+2=0\)
<=>\(x^2-x-2x+2=0\)
<=>\(x\left(x-1\right)-2\left(x-1\right)=0\)
<=>\(\left(x-1\right)\left(x-2\right)=0\)
<=>\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(TMDK\right)\\x=2\left(KTMDK\right)\end{cases}}\)
Vậy: x=1
\(\left(x+4\right)\left(3x-1\right)+\left(x^2+8x+16\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+4\right)\left(3x-1\right)=0\\x^2+8x+16=0\end{cases}}\)
Xét PT 1 : \(\left(x+4\right)\left(3x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{1}{3}\end{cases}}\)
Xét PT 2 : \(x^2+8x+16=0\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Trả lời:
a, ( x2 - 4x + 16 )( x + 4 ) - x ( x + 1 )( x + 2 ) + 3x2 = 0
<=> x3 + 4x2 - 4x2 - 16x + 16x + 64 - x ( x2 + 3x + 2 ) + 3x2 = 0
<=> x3 + 64 - x3 - 3x2 - 2x + 3x2 = 0
<=> 64 - 2x = 0
<=> 2x = 64
<=> x = 32
Vậy x = 32 là nghiệm của pt.
b, ( 8x + 2 )( 1 - 3x ) + ( 6x - 1 )( 4x - 10 ) = - 50
<=> 8x - 24x2 + 2 - 6x + 24x2 - 60x - 4x + 10 = - 50
<=> - 62x + 12 = - 50
<=> - 62x = - 62
<=> x = 1
Vậy x = 1 là nghiệm của pt.
các bạn giúp tóe nhoe
= (3x + 1)^2 - (x-4)^2
= (3x+ 1 +x-4) (3x+1-x+4)
= (4x-3) (2x+5)