Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{x.\left(x+2\right)}=\frac{24}{35}\)
\(\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{x.\left(x+2\right)}\right)=\frac{24}{35}\)
\(\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{x+2}\right)=\frac{24}{35}\)
\(\frac{3}{10}-\frac{3}{2x+4}=\frac{24}{35}\)
\(\frac{3}{2x+4}=\frac{-27}{70}\)
tự làm nốt
\(\Leftrightarrow\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{1}{5}:\dfrac{3}{2}=\dfrac{2}{15}\)
\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{5}\)
=>x+2=5
hay x=3
a) \(A=\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.10}+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{100}\right)+\dfrac{1}{143}=\dfrac{1}{2}.\dfrac{99}{100}+\dfrac{1}{143}=\dfrac{99}{200}+\dfrac{1}{143}=\dfrac{99.143+200.1}{200.143}=\dfrac{14157+200}{28600}=\dfrac{14357}{28600}\)
b) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=14950\)
\(\Rightarrow x+x+...+x+\left(1+2+...+99\right)=14950\)
\(\Rightarrow100x+\left(\left(99+1\right):2\right).99:2=14950\)
\(\Rightarrow100x+2475=14950\Rightarrow100x=12475\Rightarrow x=\dfrac{12475}{100}=\dfrac{499}{4}\)
Ta có :
Đặt \(A=\frac{31}{3}+\frac{31}{15}+...+\frac{31}{143}\)
\(A=\frac{31}{1.3}+\frac{31}{3.5}+...+\frac{31}{11.13}\)
\(\frac{2}{31}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(\frac{2}{31}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(\frac{2}{31}A=1-\frac{1}{13}\)
\(A=\frac{12}{13}:\frac{2}{31}\)
\(A=\frac{186}{13}\)
\(\Rightarrow x-\frac{186}{13}=\frac{9}{13}\)
\(x=\frac{9}{13}+\frac{186}{13}\)
\(x=\frac{195}{13}=15\)
Ủng hộ mk nha !!! ^_^
\(\text{Đặt }A=\frac{31}{3}+\frac{31}{15}+...+\frac{31}{143}\)
\(\Rightarrow A=\frac{31}{1.3}+\frac{31}{3.5}+...+\frac{31}{11.13}\)
\(\Rightarrow\frac{2}{31}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(\Rightarrow\frac{2}{31}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(\Rightarrow\frac{2}{31}A=1-\frac{1}{13}\Rightarrow A=\frac{12}{13}:\frac{2}{31}=\frac{186}{13}\)
\(\Rightarrow x-\frac{186}{13}=\frac{9}{13}\)
\(\Rightarrow x=\frac{9}{13}+\frac{186}{13}\)
\(\Rightarrow x=\frac{195}{13}=15\)
Sửa đề
\(\dfrac{3}{35}+\dfrac{3}{63}+\dfrac{3}{99}+...+\dfrac{3}{x\left(x+2\right)}=\dfrac{24}{35}\)
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+\dfrac{3}{9.11}+...+\dfrac{3}{x\left(x+2\right)}=\dfrac{24}{35}\)
\(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{x\left(x+2\right)}\right)=\dfrac{24}{35}\)
\(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{24}{35}\)
\(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{x+2}\right)=\dfrac{24}{35}\)
\(\dfrac{1}{5}-\dfrac{1}{x+2}=\dfrac{24}{35}:\dfrac{3}{2}\)
\(\dfrac{1}{5}-\dfrac{1}{x+2}=\dfrac{16}{35}\)
\(\dfrac{1}{x+2}=\dfrac{1}{5}-\dfrac{16}{35}\)
\(\dfrac{1}{x+2}=\dfrac{-9}{35}\)
\(x+2=35\)
\(x=35-2\)
\(x=33\)
\(-17x=-17-\left(-34\right)\)
\(-17x=-17\)
\(x=-1\)
Bạn coi lại đề: $\frac{3}{69}$ không nằm trong các số hạng có quy luật.