K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

Đặt A = \(\frac{-3}{20}-\frac{3}{200}-\frac{3}{2000}-\frac{3}{20000}\)

==>  A = \(-\left(\frac{3}{20}+\frac{3}{200}+\frac{3}{2000}+\frac{3}{20000}\right)\)

=>10A = \(-\left(\frac{3}{2}+\frac{3}{20}+\frac{3}{200}+\frac{3}{2000}\right)\)

==>9A = 10A - A

=> 9A = [\(-\left(\frac{3}{2}+\frac{3}{20}+\frac{3}{200}+\frac{3}{2000}\right)\)] - [\(-\left(\frac{3}{20}+\frac{3}{200}+\frac{3}{2000}+\frac{3}{20000}\right)\)]

=> 9A = \(-\frac{3}{2}-\frac{3}{20}-\frac{3}{200}-\frac{3}{2000}+\frac{3}{20}+\frac{3}{200}+\frac{3}{2000}+\frac{3}{20000}\)

==>9A = \(-\frac{3}{2}+\frac{3}{20000}\)

==>9A = \(\frac{-29997}{20000}\)

==> A =\(\frac{-9999}{20000}\)

Tích cho mk nhé . Chi tiết lắm rùi

29 tháng 9 2017

Đáng nhẽ phải là -3333/20000 chứ

28 tháng 9 2017

MIK NHẦM

A=\(-\dfrac{3000}{20000}-\dfrac{300}{20000}-\dfrac{30}{20000}-\dfrac{3}{20000}\)

A=\(-\dfrac{3333}{20000}\)

ĐÂY MỚI LÀ ĐÚNG NÈ, NHỚ TICK NHAvui

26 tháng 9 2017

A= \(\dfrac{3333}{20000}\)

24 tháng 6 2016

A= 1-2+3-4+...+59-60

  =(1-2)+(3-4)+...+(59-60)

  =-1+(-1)+...+(-1) 

  =(-1)*30

  = -30

Đáp án : -30

15 tháng 3 2020

( 1- 2 ) + ( 3 - 4 ) + ....+( 59 - 60 )

= ( -1 ) + ( -1 ) + .....+ ( -1 )

= Từ 1 đến 60 có 60 số. Vậy có 30 tổng ( số hạng ).

=> Nên tổng trên có kết quả là : ( -1 ) * 30

= -30

Vậy đáp án là -30. 

20 tháng 7 2016

\(-\frac{3333}{20000}\)

thế thôi

 

7 tháng 7 2018

A = 1 - 2 + 3 - 4 + ... + 59 - 60

A = (1 - 2) + (3 - 4) + ... + (59 - 60)

A = -1 + (-1) + ... + (-1)            có 30 số -1  

A = -1.30

A = -30

\(B=\frac{-3}{20}-\frac{3}{200}-\frac{3}{2000}-\frac{3}{20000}\)

\(B=\frac{-3000}{20000}-\frac{300}{20000}-\frac{30}{20000}-\frac{3}{20000}\)

\(B=\frac{-3333}{20000}\)

7 tháng 7 2018

Mk chỉ làm đc phần a thui nha bạn !

\(A=1-2+3-4+...+59-60\)

\(A=\left(1-2\right)+\left(3-4\right)+...+\left(59-60\right)\)

\(A=-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

                 Có tổng cộng 30 số \(\left(-1\right)\)

\(A=30.\left(-1\right)\)

\(A=-30\)

17 tháng 2 2019

1,

\(S=-\dfrac{7}{20}-\dfrac{7}{200}-\dfrac{7}{2000}-\dfrac{7}{20000}\\ =-\dfrac{7}{20}\left(1+\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{1000}\right)\\ =-\dfrac{7}{20}\left(\dfrac{1000+100+10+1}{1000}\right)\\ =-\dfrac{7}{20}\cdot\dfrac{1111}{1000}\\ =\dfrac{7777}{20000}\)

2,

a, \(Tacó:\\ 9^{2000}=\left(3^2\right)^{2000}=3^{4000}\\ \Rightarrow9^{2000}=3^{4000}\)

b,

\(2^{225}=\left(2^{15}\right)^{15}=32768^{15}\\ 3^{150}=\left(3^{10}\right)^{15}=59049^{15}\\ Vì32768< 59049nên32768^{15}< 59049^{15}\\ \Rightarrow2^{225}< 3^{150}\)

3,

\(\left|x-7\right|=x-7\\ Vì\left|x-7\right|\ge0\forall x\\ \Rightarrow x-7\ge0\forall x\\ \Leftrightarrow x-7\ge0\\ \Leftrightarrow x\ge7\\ Vậyx\ge7\)

17 tháng 2 2019

Bài 3:

\(\left|x-7\right|=x-7\)

Khi giá trị tuyệt đối của \(x-7\) bằng chính nó, thì \(x-7\) phải \(\ge0\)

Suy ra: \(x-7\ge0\Rightarrow x\ge7\)

Vậy \(x\ge 7\)

24 tháng 6 2021

`a)2^{300}=(2^3)^100=8^100`

`3^200=(3^2)^100=9^100`

Vì `9^100>8^100`

`=>2^300<3^200`

`b)3xx24^10`

`=3.(3.8)^10`

`=3^{11}.8^10`

`=3^{11}.2^30`

`2^300=2^{30}.2^{270}`

`=2^{30}.8^{90}`

Vì `3^11<8^90`

`=>3^{11}.2^30<8^{90}.2^30=2^300`

`=>3xx24^{10}<2^300+3^20+4^30`

10 tháng 7 2023

a) -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2003

Ta có:

(3 - x)¹⁰⁰ ≥ 0

⇒ -(3 - x)¹⁰⁰ ≤ 0

(y + 2)²⁰⁰ ≥ 0

⇒ -3(y + 2)²⁰⁰ ≤ 0

⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ ≤ 0 

⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2023 ≤ 2023

Vậy giá trị lớn nhất của biểu thức đã cho là 2023 khi x = 3 và y = -2

b) (x² + 3)² + 125

= x⁴ + 6x² + 9 + 125

= x⁴ + 6x² + 134

Ta có:

x⁴ ≥ 0

x² ≥ 0

⇒ 6x² ≥ 0

⇒ x⁴ + 6x² ≥ 0

⇒ x⁴ + 6x² + 134 ≥ 134

⇒ (x² + 3)² + 125 ≥ 134

Vậy giá trị nhỏ nhất của biểu thức đã cho là 134

c) -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022

Ta có:

(x - 20)²⁰⁰ ≥ 0

⇒ -(x - 20)²⁰⁰ ≤ 0

(y + 5)¹⁰⁰ ≥ 0

⇒ -2(y + 5)¹⁰⁰ ≤ 0

⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ ≤ 0

⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022 ≤ 2022

Vậy giá trị lớn nhất của biểu thức đã cho là 2022 khi x = 20 và y = -5

27 tháng 6 2021

\(a,\Leftrightarrow y^{200}-y=y\left(y^{199}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y^{199}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\)

Vậy ..

\(b,\Leftrightarrow y^{2010}-y^{2008}=y^{2008}\left(y^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y^{2008}=0\\y^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=1\\y=-1\end{matrix}\right.\)

Vậy ...

\(c,\Leftrightarrow\left(2y-1\right)^{50}-\left(2y-1\right)=\left(2y-1\right)\left(\left(2y-1\right)^{49}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2y-1=0\\\left(2y-1\right)^{49}=1\end{matrix}\right.\)

\(\Leftrightarrow y=\dfrac{1}{2}\)

Vậy ..

\(d,\Leftrightarrow\left(\dfrac{y}{3}-5\right)^{2008}\left(\left(\dfrac{y}{3}-5\right)^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(\dfrac{y}{3}-5\right)^{2008}=0\\\left(\dfrac{y}{3}-5\right)^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{y}{3}-5=0\\\dfrac{y}{3}-5=1\\\dfrac{y}{3}-5=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=15\\y=18\\y=12\end{matrix}\right.\)

Vậy ..

15 tháng 8 2018

Ta có: \(\left(2x-5\right)^{2000}\ge0\forall x\)

\(\left(3y+4\right)^{2002}\ge0\forall y\)

\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\forall x,y\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\)

15 tháng 8 2018

a. \(7^6+7^5-7^4\)

\(=7^4.7^2+7^4.7-7^4\)

\(=7^4.\left(7^2+7-1\right)\)

\(=7^4.55\)

\(55⋮11\)

\(\Rightarrow7^4.55⋮11\Rightarrow7^6+7^5-7^4⋮11\left(dpcm\right)\)

b. \(1+2+2^2+2^3+...+2^{59}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)

\(=3+2^2.\left(1+2\right)+...+2^{58}.\left(1+2\right)\)

\(=3+2^2.3+...+2^{58}.3\)

\(=3.\left(1+2^2+2^4+2^6+...+2^{58}\right)\)

\(3.\left(1+2^2+2^4+2^6+...+2^{58}\right)⋮3\)

\(\Rightarrow1+2+2^2+...+2^{59}⋮3\)