Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* = 1 ; 2 ; 3 ; 4 5 ; 6 ; 7 ; 8 ; 9 ; 0
b/ 120 - x : 4 = 34 : 311
120 - x : 4 = 37
120 - x : 4 = 2187
x : 4 = 120 - 2187
x : 4 = -2067
=> x = -8268
a) 3*2 có tận cùng là 2 nên chia hết cho 2
vậy * = 0;1;2 ... 9
b) 120 - x : 4 = \(3^4:3^{11}\)
120 - x : 4 = \(-\left(3^7\right)\)
x : 4 = 120 - \(\left[-\left(3^7\right)\right]\)
x : 4 = 2307
x = 2307 x 4
x = 9228
Chia hết cho 3 ; 9 thì phải có tổng các chữ số chai hết cho 9
Vậy số cần tìm là : 9
48 chia hết cho x và 36 chia hết cho x và 3 < x < 14
Vậy các số cần tìm là : 4 ; 6 ; 12
chắc vậy
k nha
Để 31* chia hết cho 3 và 9 thì tổng của chúng phải chia hết cho 9 vì một số chia hết cho 9 luôn luôn chia hết cho 3
Hay : ( 3 + 1 + * ) chia hết cho 9 = ( 4 + * ) chia hết cho 9 => * = 5
Vậy số đó là 315
3 < x < 14
Mà 48 và 36 cùng chia hết cho 12 nên => x = 12
\(3.2=6\)
6 chia hết cho 2!
K mình nha nguyễn đam tâm
Mình nhanh nhất đó!
TH1:Ta có có:5(6x+11y)+(x+7y):
=30x+55y+x+7y
=31x+62y chia hết cho 31
Vì 5(6x+11y) chia hết cho 31 nên x+7y chia hết cho 31
TH2:Ta có:5(6x+11y)+(x+7y)
=30x+55y+x+7y
=31x+62y chia hết cho 31
Vì x+7y chia hết cho 31 nên 5(6x+11y) chia hết cho 31
Mà 5 không chia hết cho 31 nên (6x+11y) chia hết cho 31
Mình chỉ biết câu sau thôi câu đầu ko biết !
3 x 2 = 6
6 chia hết cho 2
K mình nha nguyen dan tam
Ta có : câu thứ hai là:
Với mọi * đều đáp ứng điều kiện
=> * là 0;1;2;3;4;5;6;7;8;9
25*3 thay bằng các chữ số 2, 5 để 25*3 chia het cho 3 va ko chia het cho 9
có \(2+5+x+3⋮3\)
=>x=2;5;8
mà\(2+5+x+3\)không chia hết cho 9
=>x=2;5
a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3
b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng)
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27.
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27.
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1
= (10^k+18k-1)+9*10^k+18
= (10^k+18k-1)+9(10^k+2)
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27.
Chứng minh 9(10^k+2) chia hết cho 27.
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng)
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27.
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27.
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2)
= 9(10^m+2) +81*10^m
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27
=>9(10^k+2) chia hết cho 27
=>10^(k+1)+18(k+1)-1 chia hết cho 27
=>10^n+18n-1 chia hết cho 27=> đpcm
K MINH NHA!...............
Mình chỉ biết câu đầu tiên thôi câu sau ko biết!
3 x 2 = 6
6 chia hết cho 2
K mình nha nguyễn đan tâm
thanks ban ! minh da k roi !