Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3^{16}:3=3^{16-1}=3^{15}\)
\(b,3^6.3^4.3^2.3=3^{6+4+2+1}=3^{13}\)
\(c,\left(-\frac{1}{4}\right).\left(6\frac{2}{11}\right)+\left(3\frac{9}{11}\right).\left(-\frac{1}{4}\right)=\left(-\frac{1}{4}\right).\frac{68}{11}+\frac{42}{11}.\left(-\frac{1}{4}\right)\)
\(=\left(-\frac{1}{4}\right)\left(\frac{68}{11}+\frac{42}{11}\right)\)
\(=\left(-\frac{1}{4}\right).10\)
\(=-\frac{10}{4}=-\frac{5}{2}\)
\(d,\left(-\frac{1}{2}\right)^3+\frac{1}{2}:5=\left(-\frac{1}{2}\right)\left(\left(\frac{1}{2}\right)^2-\frac{1}{5}\right)\)
\(=-\frac{1}{2}.\left(\frac{1}{4}-\frac{1}{5}\right)\)
\(=-\frac{1}{2}.\frac{1}{20}\)
\(=-\frac{1}{40}\)
\(g,1\frac{1}{25}+\frac{2}{21}-\frac{1}{25}+\frac{19}{21}=\frac{26}{25}+\frac{2}{21}-\frac{1}{25}+\frac{19}{21}\)
\(=\left(\frac{26}{25}-\frac{1}{25}\right)+\left(\frac{2}{21}+\frac{19}{21}\right)\)
\(=1+1\)
\(=2\)
a/
\(9.3^2.\frac{1}{81}.27=\frac{9.3^2.27}{81}=\frac{3^2.3^2.3^3}{3^4}=\frac{3^7}{3^4}=3^3\)
b/
\(4.32:\left(2^3.\frac{1}{16}\right)=4.32:\left(\frac{2^3}{16}\right)=4.32:\left(\frac{2^3}{2^4}\right)=4.32:\frac{1}{2}=4.32.2=4.64=4.4^3=4^4\)
c/
\(3^4.3^5:\frac{1}{27}=3^4.3^5.27=3^4.3^5.3^3=3^{12}\)
d/(ý bạn là (-2)^2 hay -2^2 , mình làm theo cách (-2)^2 nhé!)
\(2^2.4.\frac{32}{\left(-2\right)^2}.2^5=2^2.2^2.\frac{2^5}{2^2}.2^5=2^2.2^2.2^3.2^5=2^{12}\)
Ta có: +) \({({2^2})^3} = {2^2}{.2^2}{.2^2} = {2^{2 + 2 + 2}} = {2^6}\)
+) \({\left[ {{{( - 3)}^2}} \right]^2} = {( - 3)^2}.{( - 3)^2} = {( - 3)^{2 + 2}} = {( - 3)^4}\)
`@` `\text {Ans}`
`\downarrow`
\(3^2\cdot2^5\cdot\left(\dfrac{2}{3}\right)^2\)
`=`\(\left(3\cdot\dfrac{2}{3}\right)^2\cdot2^5\)
`=`\(2^2\cdot2^5=2^7\)
\(3^2\cdot2^5\cdot\left(\dfrac{2}{3}\right)^2\)
\(=2^5\cdot\left(3\cdot\dfrac{2}{3}\right)^2\)
\(=2^5\cdot\left(\dfrac{3\cdot2}{3}\right)^2\)
\(=2^5\cdot2^2\)
\(=2^{2+5}\)
\(=2^5\)
Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200
=> 2A = 2 + 22 + 23 + ....... + 2201
=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 )
=> A = 2201 - 1
=> A + 1 = 2201
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200
2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201
2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )
A = 2 ^ 201 - 1
=> A + 1 = 2 ^ 201
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005
3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006
3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )
- ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )
2B = 3 ^ 2006 - 3
=> 2B = 3 ^ 2006
Vậy 2B + 3 là lũy thừa của 3
a) 8 = 23
425 = 25.35.75
16 = 24
b) (0,09)3 = (3/10)6
(3/10)8 = (3/10)8
0,027 = (3/10)3
`@` `\text {Ans}`
`\downarrow`
`a)`
`8 = 2^3`
`32^5` chứ ạ?
`32^5 = (2^5)^5 = 2^10`
`16 = 2^4`
`b)`
`(0,09)^3 = (0,3^2)^3 = 0,3^6` hay `(3/10)^6`
`(3/10)^8 = (3/10)^8`
`(0,027) = (0,3)^3` hay `(3/10)^3`
`@` `\text {Kaizuu lv uuu}`
\(\left(\dfrac{1}{27}\right)^5\) = \(\left(\dfrac{1}{3^3}\right)^5\) = \(\left(\dfrac{1}{3}\right)^{15}\)
\(\left(\dfrac{1}{27}\right)^5=\left[\left(\dfrac{1}{3}\right)^3\right]^5=\dfrac{1}{3}^{3.5}=\dfrac{1}{3}^{15}\)
Câu trả lời:
\(3^{16}:3=3^{16-1}=3^{15}\)
\(3^6.3^4.3^2.3=3^{6+4+2+1}=3^{31}\)
Chúc bạn học tốt!
\(a,3^{16}\div3=3^{16}\div3^1=3^{16-1}=3^{15}\)
\(b,3^6\times3^4\times3^2\times3=3^6\times3^4\times3^2\times3^1=3^{6+4+2+1}=3^{13}\)
~Study well~
#Seok_Jin