K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2.5}=\dfrac{y}{4}=\dfrac{z}{1.6}=\dfrac{4x-8y+5z}{4\cdot2.5-8\cdot4+5\cdot1.6}=4\)

=>x=10; y=16; z=6,4

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{15x-8y-5z}{15\cdot10-8\cdot6-5\cdot3}=\dfrac{435}{87}=5\)

=>x=50; y=30; z=15

c: x/5=y/-7

nên x/-5=y/7

=>x/-20=y/28

y/4=z/15 nên y/28=z/105

=>x/-20=y/28=z/105

=>\(\dfrac{x}{-20}=\dfrac{y}{28}=\dfrac{z}{105}=\dfrac{x+3y-4z}{-20+3\cdot28-4\cdot105}=-\dfrac{9}{178}\)

=>x=180/178=90/89; y=-126/89; z=-945/178

9 tháng 10 2016

Theo đề bài ta có:
\(\frac{x}{2,5}=\frac{y}{4}=\frac{z}{1,6}\) và \(4x-8y+5z=-56\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2,5}=\frac{y}{4}=\frac{z}{1,6}=\frac{4x-8y+5z}{4\cdot2,5-8\cdot4+5\cdot1,6}=\frac{-56}{-14}=4\)

=>\(\begin{cases}x=10\\y=16\\z=6,4\end{cases}\)

9 tháng 10 2016

Theo bài ta có:

\(\frac{x}{2,5}\) = \(\frac{y}{4}\) = \(\frac{z}{1,6}\) và 4x - 8y + 5z = -56

Ta có: \(\frac{x}{2,5}\) = \(\frac{y}{4}\) = \(\frac{z}{1,6}\) = \(\frac{4x}{10}\) = \(\frac{8y}{32}\) = \(\frac{5z}{8}\) và

4x - 8y + 5z = -56

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2,5}\) = \(\frac{y}{4}\) = \(\frac{z}{1,6}\) = \(\frac{4x}{10}\) = \(\frac{8y}{32}\) = \(\frac{5z}{8}\) = \(\frac{4x-8y+5z}{10-32+8}\)\(\frac{-56}{-14}\) = 4

Từ: \(\frac{x}{2,5}\) = 4 => x = 10

        \(\frac{y}{4}\) = 4 => y = 16

       \(\frac{z}{1,6}\) = 4 => z = 6,4

  Vậy => \(\begin{cases}x=10\\y=16\\z=6,4\end{cases}\)

22 tháng 6 2015

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42

22 tháng 6 2017

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)

22 tháng 6 2017

e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)

Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).

29 tháng 9 2017

Giải:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2,5}=\dfrac{y}{4}=\dfrac{z}{1,6}=\dfrac{4x}{10}=\dfrac{8y}{32}=\dfrac{5z}{8}=\dfrac{4x-8y+5z}{10-32+8}=\dfrac{-56}{-14}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2,5}=4\\\dfrac{y}{4}=4\\\dfrac{z}{1,6}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4.2,5\\y=4.4\\z=4.1,6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=16\\z=6,4\end{matrix}\right.\)

Vậy \(x=10\); \(y=16\)\(z=6,4\).

Chúc bạn học tốt!

29 tháng 9 2017

Theo bài ra ta có:

\(\dfrac{x}{2,5}=\dfrac{y}{4}=\dfrac{z}{1,6}\)\(4x-8y+5z=-56\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2,5}=\dfrac{y}{4}=\dfrac{z}{1,6}=\dfrac{4x-8y+5z}{4.2,5-6.4+5.1,6}=\dfrac{-56}{-14}=4\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2,5}=4\Rightarrow x=10\\\dfrac{y}{4}=4\Rightarrow y=16\\\dfrac{z}{1,6}=4\Rightarrow z=6,4\end{matrix}\right.\)

Vậy .....

Chúc bạn học tốt!

Ko cần chỉnh 😁