Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".
Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp:
1) Nếu họ ngồi cạnh nhau thì hiệp sĩ sẽ nói đúng, còn kẻ lừa dối nói “Không”.
2) Nếu họ không ngồi cạnh nhau thì hiệp sĩ nói “Không”, còn kẻ lừa dối nói “Đúng”.
Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.
Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là hiệp sĩ, có bao nhiêu người là kẻ lừa dối và họ xếp ở những vị trí nào.
Mỗi người có đúng một người bạn trong số những người khác. Hơn nữa, bạn của người nói thật là kẻ lừa dối và bạn của kẻ lừa dối là người nói thật (đề bài) => Có 15 cặp bạn (15 kẻ nói dối và 15 kẻ nói thật)
- Nếu các cặp bạn đều ngồi cạnh nhau
=> 15 kẻ nói dối trả lời "Đúng" (vì kẻ nói dối luôn nói thật) đều ngồi ở vị trí lẻ
=> Có 0 người ở vị trí chẵn trả lời "Đúng"
- Nếu các cặp bạn ko ngồi cạnh nhau
=> 15 người nói thật trả lời "Đúng" (vì người nói thật luôn nói dối) đều ngồi ở vị trí lẻ
=> Có 0 người ở vị trí chẵn trả lời "Đúng"
Thiên tài thì liên quan gì ở đây nhở?
Có 30 người mà đánh dấu có đến 10 thôi à! Linh lấy bút đỏ đánh tiếp từ 11 đến 30 cho đủ chẵn lẻ nhé!
Xét người ngồi ở vị trí lẻ X bất kỳ, ta thấy:
(1) ./ Khi hỏi X và "bạn X", ta chỉ thu được 1 câu trả lời ĐÚNG; 1 câu trả lời KHÔNG ĐÚNG dù X với "bạn X" có ngồi cạnh nhau hay không. Vì ngược lại, nếu 2 câu cùng là ĐÚNG, hoặc KHÔNG ĐÚNG thì X và "bạn X" đều nói thật hoặc đều nói dối - trái giả thiết.
(2) ./ Những người ngồi vị trí lẻ, tức là không ngồi cạnh nhau.
Do tất cả những người ngồi vị trí lẻ đều nói "ĐÚNG" => Từ (1) "bạn X" nói KHÔNG ĐÚNG => "bạn X" không ngồi vị trí lẻ => "bạn X ngồi vị trí chẵn.
(3) ./ Do xét X là lẻ bất kỳ nên bạn của các X1 ; X3 ; X5 ; ... ; X15 đều ngồi ở các vị trí chẵn và đều trả lời là KHÔNG ĐÚNG.
Vậy, không có ai ngồi vị trí chẵn nói ĐÚNG cả.
Các bạn có thấy người ra câu hỏi này là NGỌ NHI không? Nếu thấy ĐÚNG thì k vào chữ "Đúng" dưới câu trả lời này nhé!
Đáp án : Hội trường có 10 dãy ghế hoặc 20 dãy ghế, giải thích các bước giải :
Gọi số ghế ban đầu là x, x thuộc N* => ban đầu mỗi dãy ghế có 200/x ghế
=> Vì phải kê thêm 2 dãy ghế => Ta có x + 2 dãy ghế
=> Vì mỗi dãy phải ngồi thêm 2 người => mỗi dãy lại có : 200/x + 2 ghế
=> Số người đc ngồi là : ( x + 2 ) . ( 200/x + 2 ). Vì có 6 người k có ghế nên ( x + 2). ( 200/x + 2 ) +6= 270
=> ( x +2). ( 200/x + 2) = 264
=> ( x +2). ( 200 +2x ) = 264x
=> 2x2 + 400 + 204x = 264x
=> 2x2 - 60x + 4000 = 0
=> 2(x-10 ). ( x -20 ) = 0, Kết luận vậy từ đây ta có thể suy ra đc x thuộc { 10; 20 }