Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 30 + 31 + 32 + 33 + .... + 350
=> 3A = 31 + 32 + 33 + 34 + ... + 351
Khi đó 3A - A = (31 + 32 + 33 + 34 + ... + 351) - (30 + 31 + 32 + 33 + .... + 350)
=> 2A = 351 - 30
=> A = \(\frac{3^{51}-1}{2}\)
Khi đó A = \(\frac{3^{51}-1}{2}=\frac{3^3.3^{48}-1}{2}=\frac{27.\left(3^4\right)^{12}-1}{2}=\frac{27.\left(...1\right)^{12}-1}{2}\)
\(=\frac{\left(...7\right)-1}{2}=\frac{\left(...6\right)}{2}=\left(...3\right)\)
Vậy A tận cùng là 3
a) 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... +2 mũ 10
Gọi biểu thức trên là A , ta có :
A = 2^1+2^2 9+2^3+ 2^4 +...+2^10
2A= 2^2 +2^3+2^4+...+2^10+2^11
2A-A=2^11-2^1
A=2^10
b) Làm tương tự như tớ từ dòng thứ 3 mà tớ viết
5A = 5^2+5^3+...+5^25 5^26
5A-A=5^26 - 5^1
A=5^25
xin lỗi vì lúc đó mình cũng đang học bài nên hơi mất tập trung và quên chia 4 đến lúc đọc lại câu trả lời mới thấy sót
\(^{3^2}\).\(^{3^3}\)+\(2^3\).\(2^2\)
(\(^{2^3}\).\(^{3^3}\))+(\(2^2\).\(^{3^2}\)
=275
`#040911`
`(x + 5)^3 = (2x)^3`
`\Rightarrow x + 5 = 2x`
`\Rightarrow x + 5 - 2x = 0`
`\Rightarrow 5 + (x - 2x) = 0`
`\Rightarrow 5 - x = 0`
`\Rightarrow x = 5 - 0`
`\Rightarrow x = 5`
Vậy, `x= 5.`
a) 1 + 3 + 5 + ... + 13
= (13 + 1).[(13 - 1) : 2 + 1] : 2
= 14 . 7 : 2
= 49
= 7²
b) 3² + 4² + 12²
= 9 + 16 + 144
= 169
= 13²
=1024.59049-1024.19683
=1024.(59049-19683)
=1024.39366
=40310784/=512.50049
=30233088
Mình làm ngắn gọn nhé.
\(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}\)
\(\Rightarrow A=2^{51}-1\)
\(B=1+3+...+3^{66}\)
\(3B=3+3^2+...+3^{67}\)
\(2B=3+3^2+...+3^{67}-1-3-...-3^{66}\)
\(2B=3^{67}-1\)
\(B=\frac{3^{67}-1}{2}\)
\(A=1+3+3^2+...+3^{2002}\)
\(3A=3+3^2+3^3+...+3^{2003}\)
\(2A=3A-A=3^{2003}-1\Rightarrow A=\dfrac{3^{2003}-1}{2}\)
A = \(\dfrac{3^{2003}-1}{2}\)