Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chịu................................................................................ ko hiểu
`a)`
+, `Delta ABC` vuông tại `A(GT)=>hat(A)=90^0`
`DE⊥BC(GT)=>hat(BED)=90^0`
`BD` là p/g của `hat(ABC)(GT)=>hat(B_1)=hat(B_2)`
Xét `Delta ABD` và `Delta EBD` có :
`{:(hat(A)=hat(BED)(=90^0)),(BD-chung),(hat(B_1)=hat(B_2)(cmt)):}}`
`=>Delta ABD=Delta EBD(c.h-g.n)(đpcm)`
+, Có `Delta ABD=Delta EBD(cmt)`
`=>BA=BE` ( 2 cạnh t/ứng ) `(đpcm)`
`b)`
Có `BA=BE(cmt)`
`=>Delta ABE` cân tại `B`
mà `hat(ABE)=60^0(hat(ABC)=60^0)`
nên `Delta ABC` đều `(đpcm)`
`c)`
Có `Delta ABC` vuông tại `A=>hat(ABC)+hat(C)=90^0`
hay `60^0+hat(C)=90^0`
`=>hat(C)=90^0-60^0=30^0` (1)
`Delta ABE` đều `(cmt)=>hat(A_1)=60^0`
`=>hat(A_2)=30^0` (2)
Từ `(1)` và `(2)=>Delta EAC` cân tại `E`
`=>AE=EC`
Có `Delta ABE` đều `(cmt)=>AB=AE`
mà `AE=EC(cmt)`
`{:(nên EC=AB),(mà AB=EB(cmt);AB=5cm):}}`
`=>EC=EB=5cm`
Vậy `BC=EC+EB=5+5=10(cm)`
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE
b: BA=BE và góc ABE=60 độ
=>ΔBAE đều
c: Xét ΔABC vuông tại A có cos B=AB/BC
=>5/BC=1/2
=>CB=10cm
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
a) xét tam giác ABD và tam giác EBD vuông tại A, E ( gt, DE⊥BC)
BD chung
góc ABD = góc EBD ( BD là tia p/g của góc B)
do đó : tam giác ABD = tam giác EBD ( cạnh huyền + góc nhọn )
Ở lớp nói chỉ làm phần c thôi hả
c) Tam giác ABC vuông tại B
=>ABC+ACB=90 độ,
=>60 độ +ACB=90 độ
=>ACB=30 độ
Trong tam giác vuông, cạnh đối diện với góc 30 độ = 1/2 cạnh huyển
=>AB=1/2BC
=>5=1/2BC
=>BC=10
Vậy BC=10 cm
tam giác:
abd = ebd
tam giác
abe đều
tính :
độ dài bc