Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\)
\(\Leftrightarrow y^2\le25\).Mà \(y\inℕ\) nên \(0\le y^2\le25\Leftrightarrow0\le y\le5\)
Mà \(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\)
\(\Rightarrow y\in\left\{1;3;5\right\}\)
Thay vào tìm x. :) Nhớ đk: \(x,y\inℕ\)
Ta có: \(25-y^2=8.\left(x-2009\right)^2\)
\(\Rightarrow8.\left(x-2009\right)^2+y^2=25\left(1\right)\)
Vì \(y^2\ge0\)nên \(\left(x-2009\right)^2\le\frac{25}{8}\)
\(\Rightarrow\left(x-2009\right)^2=0\)hoặc \(\left(x-2009\right)^2=1\)
Với \(\left(x-2009\right)^2=1\)thay vào \(\left(1\right)\), ta có:
\(8.1+y^2=25\)
\(\Rightarrow8+y^2=25\)
\(\Rightarrow y^2=17\)( loại )
Với \(\left(x-2009\right)^2=0\)thay vào \(\left(1\right)\), ta có:
\(8.0+y^2=25\)
\(\Rightarrow0+y^2=25\)
\(\Rightarrow y^2=25\)
\(\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)
Mà \(y\in N\)
\(\Rightarrow y=5,x=2009\)
Vậy \(x=2009,y=5\)
Đáp án là:
x = 2010 hoặc 2008 và y = 3 hoặc -3.
x = 2012 hoặc 2006 và y = 1 hoặc -1.
Ta có: \(\left(x-2009\right)^2\ge0\)nên \(8\left(x-2009\right)^2\ge0\)
VP \(\ge0\)nên \(25-y^2\ge0\Leftrightarrow y^2\le25\)(1)
Mặt khác, do \(\left[8\left(x-2009\right)^2\right]⋮2\)nên \(\left(25-y^2\right)⋮2\)
\(\Leftrightarrow y^2\)lẻ \(\Leftrightarrow y\)lẻ (2)
Kết hợp (1), (2) và \(y\inℕ\),ta được: \(y\in\left\{1;3;5\right\}\)(suy ra từ \(y^2\in\left\{1;9;25\right\}\))
*Với y = 1 thì \(25-1^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\)(loại)
*Với y = 3 thì \(25-3^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\)(loại)
*Với y = 5 thì \(25-5^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\)\(\Leftrightarrow x=2009\)
Vậy x = 5 và y = 2009.
\(VT\ge0\Rightarrow\)\(-5\le y\le5\)
\(VT=8k^2\Rightarrow25-y^2=8k^2\Rightarrow k^2\le3\)
\(k^2=\left\{0,1\right\}\)
\(k=0\Rightarrow\hept{\begin{cases}x=2009\\y=+-5\end{cases}}\)
\(k^2=1\Rightarrow y^2=17\left(loai\right)\)
KL
\(\left(x,y\right)=\left(2009,-5\right);\left(2009,5\right)\)
Ta có vế phải không âm nên vế trái không âm tức là \(y^2\le25\Leftrightarrow-5\le y\le5\)
Mặt khác thì vế phải chia hết cho 5 nên vế trái chia hết cho 5,suy ra y={-5;0;5}
+)Với y=-5 =>2020(x-2019)2=0=>x=2019
+)Với y=0=> 2020(x-2019)2=25,trường hợp này không tìm được x
+)Với y=-5 thì 2020(x-2019)2=0=>x=2019
Vậy giá trị thỏa mãn của (x;y) là (2019;5);(2019;-5)
Ta có:\(25-y^2=8\left(x-2009\right)^2\)
Dễ dàng thấy rằng vế phải luôn dương ,nên vế trái phải dương
nghĩa là :\(25-y^2\) \(\ge\)0
Mặt khác do :
\(8\left(x-2009\right)^2\) ⋮ 2 .Như vậy vế trái phải chẵn
Do đó \(y^2\) phải lẻ
Do đó chỉ tồn tại các giá trị sau
\(y^2=1,y^2=9,y^2=25\)
TH1:\(y^2=1;\left(x-2009\right)^2=3\)(LOẠI)
TH2:\(y^2=9;\left(x-2009\right)^2=2\)(LOẠI)
TH3:\(y^2=25;\left(x-2009\right)^2=0;x=2009\)
Vậy phương trình có nghiệm (2009;-5),(2009;5)
Chúc Bạn có nhiều thành tích trong học tập
tìm mạng ko thiếu