K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

Ta có:\(25-y^2=8\left(x-2009\right)^2\)

Dễ dàng thấy rằng vế phải luôn dương ,nên vế trái phải dương

nghĩa là :\(25-y^2\) \(\ge\)0

Mặt khác do :

\(8\left(x-2009\right)^2\) ⋮ 2 .Như vậy vế trái phải chẵn

Do đó \(y^2\) phải lẻ

Do đó chỉ tồn tại các giá trị sau

\(y^2=1,y^2=9,y^2=25\)

TH1:\(y^2=1;\left(x-2009\right)^2=3\)(LOẠI)

TH2:\(y^2=9;\left(x-2009\right)^2=2\)(LOẠI)

TH3:\(y^2=25;\left(x-2009\right)^2=0;x=2009\)

Vậy phương trình có nghiệm (2009;-5),(2009;5)

Chúc Bạn có nhiều thành tích trong học tập

21 tháng 8 2017

tìm mạng ko thiếu

27 tháng 2 2019

Do \(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\)

\(\Leftrightarrow y^2\le25\).Mà \(y\inℕ\) nên \(0\le y^2\le25\Leftrightarrow0\le y\le5\)

Mà \(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\)

\(\Rightarrow y\in\left\{1;3;5\right\}\)

Thay vào tìm x. :) Nhớ đk: \(x,y\inℕ\)

2 tháng 3 2020

Ta có: \(25-y^2=8.\left(x-2009\right)^2\)

\(\Rightarrow8.\left(x-2009\right)^2+y^2=25\left(1\right)\)

Vì \(y^2\ge0\)nên \(\left(x-2009\right)^2\le\frac{25}{8}\)

\(\Rightarrow\left(x-2009\right)^2=0\)hoặc \(\left(x-2009\right)^2=1\)

Với \(\left(x-2009\right)^2=1\)thay vào \(\left(1\right)\), ta có:

\(8.1+y^2=25\)

\(\Rightarrow8+y^2=25\)

\(\Rightarrow y^2=17\)( loại )

Với \(\left(x-2009\right)^2=0\)thay vào \(\left(1\right)\), ta có:

\(8.0+y^2=25\)

\(\Rightarrow0+y^2=25\)

\(\Rightarrow y^2=25\)

\(\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)

Mà \(y\in N\)

\(\Rightarrow y=5,x=2009\)

Vậy \(x=2009,y=5\)

9 tháng 11 2017

Đáp án là: 

x = 2010 hoặc 2008 và y = 3 hoặc -3.

x = 2012 hoặc 2006 và y = 1 hoặc -1.

9 tháng 7 2019

Ta có: \(\left(x-2009\right)^2\ge0\)nên \(8\left(x-2009\right)^2\ge0\)

VP \(\ge0\)nên \(25-y^2\ge0\Leftrightarrow y^2\le25\)(1)

Mặt khác, do \(\left[8\left(x-2009\right)^2\right]⋮2\)nên \(\left(25-y^2\right)⋮2\)

\(\Leftrightarrow y^2\)lẻ \(\Leftrightarrow y\)lẻ (2)

Kết hợp (1), (2) và \(y\inℕ\),ta được: \(y\in\left\{1;3;5\right\}\)(suy ra từ \(y^2\in\left\{1;9;25\right\}\))

*Với y = 1 thì \(25-1^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\)(loại)

*Với y = 3 thì \(25-3^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\)(loại)

*Với y = 5 thì \(25-5^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\)\(\Leftrightarrow x=2009\)

Vậy x = 5 và y = 2009.

2 tháng 1 2017

\(VT\ge0\Rightarrow\)\(-5\le y\le5\)

\(VT=8k^2\Rightarrow25-y^2=8k^2\Rightarrow k^2\le3\)
\(k^2=\left\{0,1\right\}\)

\(k=0\Rightarrow\hept{\begin{cases}x=2009\\y=+-5\end{cases}}\)

\(k^2=1\Rightarrow y^2=17\left(loai\right)\)

KL

\(\left(x,y\right)=\left(2009,-5\right);\left(2009,5\right)\)

8 tháng 11 2019

Ta có vế phải không âm nên vế trái không âm tức là \(y^2\le25\Leftrightarrow-5\le y\le5\)

Mặt khác thì vế phải chia hết cho 5 nên vế trái chia hết cho 5,suy ra y={-5;0;5}

+)Với y=-5 =>2020(x-2019)2=0=>x=2019

+)Với y=0=> 2020(x-2019)2=25,trường hợp này không tìm được x

+)Với y=-5 thì 2020(x-2019)2=0=>x=2019

Vậy giá trị thỏa mãn của (x;y) là (2019;5);(2019;-5)

11 tháng 11 2019

sao ko xét th 2,4 VP cũng chia hết cho 2,4 mà

10 tháng 2 2016

giải rõ ra giùm cái

10 tháng 2 2016

y=5:x=2009

nhe