K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

Đáp án C

Lưu ý: Đề không cho tìm max – min trên đoạn nên ta không thể so sánh các giá trị như vậy

Cách giải: Lập BBT và ở đây kết luận được giá trị nhỏ nhất của hàm số là 1 , nhưng hàm số không có giá trị lớn nhất.

31 tháng 7 2017

Đáp án C

Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .

Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3  trên R

* Bước 1: Tập xác định D = ℝ . Đạo hàm  y ' = 8 x 3 − 8 x   .

* Bước 2: Cho   y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .

* Bước 3: Ta có bảng biến thiên sau:

Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.

26 tháng 4 2016

A=(x+1)*(x+2)*(x+3)*(x+4)

Ta có (x+1);(x+2);(x+3) và (x+4) sẽ xảy ra các trường hợp sau 

Th1:(x+1);(x+2);(x+3) và (x+4) đều là số âm

Nên tích (x+1)*(x+2)*(x+3)*(x+4) sẽ là số dương

Hay (x+1)*(x+2)*(x+3)*(x+4)>0

Th2:1 trong các số (x+1);(x+2);(x+3);(x+4) sẽ=0

Nên (x+1)*(x+2)*(x+3)*(x+4)=0

Th2:các số (x+1);(x+2);(x+3);(x+4) đều là số dương 

Nên (x+1)*(x+2)*(x+3)*(x+4)>0

Trong các trường hợp trên thì ta thấy trường hợp có GTNN là th2 nên biểu thức A sẽ có giá trị nhỏ nhất là 0(tick nha)

12 tháng 7 2016

A=(x+1)(x+2)(x+3)(x+4)=(x+1)(x+4)(x+2)(x+3)=(x^2+5x+4)(x^2+5x+6)

Đặt x^2+5x=t =>A=(t+4)(t+6)=t^2+10t+24=(t+5)^2-1 lớn hơn hoặc bằng -1 

Dấu bằng xảy ra khi t=-5 từ đó giải ra x

 

21 tháng 11 2017

Ta có  f ' x = - m 2 + m + 1 x + 1 2 > 0

Suy ra f(x) là hàm đồng biến trên [0;1]

Do đó f 0 ≤ f x ≤ f 1  hay

  - m 2 + m ≤ f x ≤ 1 2 - m 2 + m + 1

Khi đó

  m i n x ∈ 0 ; 1 f x = - m 2 + m = - 2 ⇔ m = - 1 m = 2

Đáp án A

12 tháng 1 2016

Đặt A=2/(1-x)+1/x 
=[2/(1-x)+1/x](1-x+x) 
Áp dụng bunhiacopsky ta có 
(2/(1-x)+1/x)(1-x+x) 
>={căn[2/(1-x)].căn(1-x)+căn(1/x).căn x}^2 (vì 0<x<1 nên căn (1-x),căn x có nghĩa) 
A>=(căn2+1)^2=3+2.căn2 
Dấu = xảy ra<=> căn[2/(1-x)]/ căn(1-x)= căn(1/x)/căn x 
<=>căn2/(1-x)=1/x 
<=>căn2x=1-x 
<=>x=1/(căn2+1) 
vậy min A=3+2.căn2<=> x=1/(căn2+1)

15 tháng 8 2019

12 tháng 6 2018

17 tháng 11 2019