Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có: trong 25 số nguyên tố có 1 số nguyên tố chẵn còn lại là 24 số nguyên tố lẻ. Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn.
Câu 1: 3;5;7
Câu 2:đề bài cho sai
Câu 3: Đáp số =2;3;5;7 vì 2+3+5+7=17
Câu 4: số 311141111 là số nguyên tố
số 1010101 là số nguyên tố
Đúng thì nhớ ko thì thôi
Gọi hai số nguyên tố cần tìm là a và b Ta có quy tắc : số chẵn + số lẻ =số lẻ Theo đề bài cho tổng a và b = 601 (số lẻ ). Nên ta có a là số chẵn mà là số nguyên tố . Vậy a là hai vì hai là số nguyên tố chẵn duy nhất Từ các lập luận trên ta có biểu thức : a+b=601. 2+b=601. b=601-2. b=599. Vậy b =599.hai số nguyên tố cần tìm là 2 và 599 ( bài 1)
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài
1. Các số đó là 2,3,5,7
2.Các số sau là hợp sô hết vì :
a) A chia hết cho 3
b) B chia hết cho 11
c) C chia hết cho 101
d) D = 1112111 = 1111000 + 1111 chia het cho 1111
e) E chia hết cho 3 vì 1! + 2! = 3 chia hết cho 3, còn 3! + ... + 100! cũng chia het cho 3
g) Số 3 . 5 . 7 . 9 - 28 chia hết cho 7
h) Số 311141111 = 311110000 + 31111 chia hết cho 31111
3. Xét p dưới dạng : 3k ( khi đó p = 3), 3k + 1, 3k + 2 ( k thuộc N ). Dạng thứ 3 ko thỏa mãn đề bài ( vì khi dó 8p - 1 là hợp số), 2 dạng trên đều cho 8p + 1 là hợp số.
4. r = 1.
a,b,c,d,g,h là hợp số
e là số nguyên tố
tớ chỉ biết làm bài 2 thôi
1. Hợp số có ước khác 1 và chính nó.
2.số nguyên tố là số chỉ có ước là 1 và chính nó
3.hợp số lẻ nhỏ nhất là 9.
4.số nguyên tố chẵn duy nhất là 2.
5. có 25 số nguyên tố nhỏ hơn 100
6.kiểm tra xem ước của nó là gì.
7. ta có 30=2.3.5 mà ước lớn hơn 5 nên chỉ có 6,10,15 và 30 là ước thỏa mãn
8.bội của 1 là tập số tự nhiên
9 ước của 1 là chính nó
10. 0 và 1 không là số nguyên tố cũng không là hợp số
1. Hợp số là số có nhiều hơn 2 ước
2. Số nguyên tố là số có 2 ước là 1 và chính nó
3. Hợp số lẻ nhỏ nhất : 9
4. Số nguyên tố chẵn duy nhất : 2
5. Có 25 số nguyên tố nhỏ hơn 100
6. Lần lượt chia số đó cho 1 ; 2 ; 3 ; ....... nếu số đó chia hết cho hơn 2 số thì số đó là hợp số, và ngược lại nếu số đó chia hết cho 2 số (1 và chính nó) thì số đó là số nguyên tố
7. Ta có : 30 = 2 . 3 . 5 mà các ước cần tìm lớn hơn 5 => Các ước cần tìm là : 6 ; 10 ; 15 ; 30
8. B(1) = {0 ; 1 ; 2 ; 3 ; 4 ; .......} => B(1) = N
9. Ư(1) = 1
10. Số 0 và 1 không phải số nguyên tố cũng chăng phải là hợp số.
Nếu p = 2 thì p + 2 = 4 và p + 4 = 6 đều không phải là số nguyên tố.
Nếu p 3 thì số nguyên tố p có 1 trong 3 dạng: 3k, 3k + 1, 3k + 2 với k N*.
+) Nếu p = 3k p = 3 p + 2 = 5 và p + 4 = 7 đều là các số nguyên tố.
+) Nếu p = 3k +1 thì p + 2 =3k+3-3
2. Giả sử b = 2
=> b + 2 = 2 + 2 = 4 ( không thoả mãn)
b = 3
=> b + 2 = 3 + 2 = 5, b + 4 = 3 + 4 = 7 ( thoả mãn)
=> b bằng 3 là một giá trị cần tìm
Xét b > 3 : Suy ra b có hai dạng 3k + 1 và 3k +2.
Với b có dạng 3k +1 => b + 2 = 3k +1 +2 = 3k + 3 chia hết cho 3 mà b là số nguyên tố lớn hơn 3 => không thoả mãn
Với b có dạng 3k + 2 => b + 4 = 3k +2 + 4 = 3k + 6 mà b là số nguyên tố lớn hơn 3 => không thoả mãn
Chứng tỏ mọi b lớn 3 đều không thoả mãn. Vậy b bằng 3 là giá trị cần tìm