Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018
18:
a: \(S=3\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)\)
=3*(1/2-1/4+1/4-1/6+...+1/98-1/100)
=3*49/100=147/100
b: Để A là số nguyên thì n-1 thuộc Ư(2)
=>n-1 thuộc {1;-1;2;-2}
=>n thuộc {2;0;3;-1}
Lời giải:
$M=3^{2017}-3^{2016}+3^{2015}-....+3-1$
$3M=3^{2018}-3^{2017}+3^{2016}-...+3^2-3$
$M+3M=3^{2018}-1$
$4M=3^{2018}-1$
$16M=4(3^{2018}-1)$
Ta thấy: $3^4=81\equiv 1\pmod {10}$
$\Rightarrow 3^{2018}=(3^4)^{504}.3^2\equiv 1^{504}.3^2\equiv 9\pmod {10}$
$\Rightarrow 16M=4(3^{2018}-1)\equiv 4(9-1)\equiv 32\equiv 2\pmod {10}$
Vậy $16M$ tận cùng là $2$
2
\(S1=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{100.102}\)
\(S1=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{51}{102}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\frac{25}{51}\)
\(S1=\frac{25}{102}\)