K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

a/

\(1995^n.1997^n=\left(1995.1997\right)^n\)

\(1996^{2n}=\left(1996^2\right)^n\)

\(1995.1997=\left(1996-1\right).\left(1996+1\right)=1996^2-1\)

\(\Rightarrow1995.1997< 1996^2\Rightarrow1995^n.1997^n< 1996^{2n}\)

b/

\(A=\frac{1}{2.9}+\frac{1}{6.9}+\frac{1}{9.12}+\frac{1}{9.20}+\frac{1}{9.30}+\frac{1}{9.42}+\frac{1}{9.56}\)

\(A=\frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\)

\(A=\frac{1}{9}\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{8-7}{7.8}\right)\)

\(A=\frac{1}{9}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=\frac{1}{9}\left(1-\frac{1}{9}\right)=\frac{1}{9}.\frac{8}{9}=\frac{8}{81}\)

1 tháng 11 2017

a,hay \(\left(1995\cdot1997\right)^n\)và \(\left(1996\cdot1996\right)^n\)

hay so sánh \(1995\cdot1997\)và \(1996\cdot1996\)

ta có 1995*1997=1995*(1996+1)=1995*1996+1995

         1996*1996=1996*(1995+1)=1996*1995+1996

vì 1995<1996 => \(\left(1995\cdot1997\right)^n\)<\(\left(1996\cdot1996\right)^n\)

1 tháng 11 2017

câu b, bình phương 2 vế, xong làm tương tự

15 tháng 1 2017

Khó vậy bạn

Mình mới học lớp 7

3 tháng 4 2020

Ta có :1996! = 1.2.3 . ... . 1995 . 1996

           : 1995! = 1.2.3 . ... . 1995 

=> 1996! > 1995 ! 

=> \(\sqrt[1995]{1996}>\sqrt[1995]{1995!}\)

3 tháng 4 2020

Ban Shadow oi, ban thieu so 1 o B roi nhe 

14 tháng 8 2020

ta có bđt \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\) với mọi \(a+b\ge0\) và \(n\inℝ\)

\(1+\sqrt[1995]{1995}=2\sqrt[1995]{\left(\frac{1+\sqrt[1995]{1995}}{2}\right)^{1995}}\le2\sqrt[1995]{\frac{1+1995}{2}}=2\sqrt[1995]{\frac{1996}{2}}\)

\(=\sqrt[1995]{2^{1994}.1996}=\sqrt[1995]{2.2...2.1996}< \sqrt[1995]{2.3...1995.1996}=\sqrt[1995]{1996!}\)

5 tháng 11 2015

s2 Lắc Lư s2 vào câu hỏi tương tự có đó

5 tháng 11 2015

Hoàng Anh Tú tám đâu 

17 tháng 8 2021

1, A=\(\left(1-\dfrac{2\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}+a+1}\right)\)

ĐKXĐ: a≥0

A=\(\left(1-\dfrac{2\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{\sqrt{a}\left(a+1\right)+1\left(a+1\right)}\right)\)

A=\(\left(\dfrac{a+1}{a+1}-\dfrac{2\sqrt{a}}{a+1}\right):\left(\dfrac{a+1}{\left(\sqrt{a}+1\right)\left(a+1\right)}-\dfrac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a+1\right)}\right)\)

A=\(\left(\dfrac{a+1-2\sqrt{a}}{a+1}\right):\left(\dfrac{a+1-2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a+1\right)}\right)\)

A=\(\left(\dfrac{a+1-2\sqrt{a}}{a+1}\right).\left(\dfrac{\left(a+1\right)\left(\sqrt{a}+1\right)}{a+1-2\sqrt{a}}\right)\)

A=\(\sqrt{a}+1\)

Vậy A=\(\sqrt{a}+1\)

2, a=1996-2\(\sqrt{1995}\)

a=\(1995-2\sqrt{1995}+1\)

a=\(\left(\sqrt{1995}-1\right)^2\) (TMĐKXĐ)

thay a=\(\left(\sqrt{1995}-1\right)^2\) vào A ta có:

A=\(\sqrt{\left(\sqrt{1995}-1\right)^2}+1\)

A=\(\sqrt{1995}\)

Vậy a=1996-2\(\sqrt{1995}\) thì A=\(\sqrt{1995}\)