Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1b. Ta thấy \(225-15^2=0\)
Mọi số nhân với 0 đều = 0
=> \(2017^0=1\)
2.
\(A=\dfrac{2.5^{22}-9.5^{21}}{25^{10}}:\dfrac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\dfrac{5^{21}\left(2.5-9\right)}{5^{20}}:\dfrac{5.7^{14}\left(3.7-19\right)}{7^{15}\left(7+3\right)}=5.1:\dfrac{5.7^{14}.2}{7^{15}.10}=5:\dfrac{1}{7}=35\)
Đặt A= \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\) : \(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)
Có : \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\)
= \(\dfrac{\left(2.5-9\right).5^{21}}{\left(5^2\right)^{10}}\)= \(\dfrac{\left(10-9\right).5^{21}}{5^{20}}\)=\(\dfrac{5^{21}}{5^{20}}\)= 5 (1)
Có: \(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)
= \(\dfrac{5.\left[7^{14}.\left(3.7-19\right)\right]}{\left[7^{15}.\left(3+7\right)\right]}\)=\(\dfrac{5.7^{14}.2}{7^{15}.10}\)=\(\dfrac{10.7^{14}}{7^{15}.10}\)=\(\dfrac{1}{7}\) (2)
Từ (1) và (2) suy ra:
A= 5:\(\dfrac{1}{7}\)=5.7=35
Vậy A=35 hay \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\):\(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)= 35
Chúc học tốt nhé
câu 1 \(A=\dfrac{3^2}{5^2}.5^2-\dfrac{9^3}{4^3}:\dfrac{3^3}{4^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{\left(3^2\right)^3}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{3^6}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}=3^2-3^3+\dfrac{1}{2}=-18+\dfrac{1}{2}=-\dfrac{35}{2}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{22}.2\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{4^4}{8^2}\right)^{2009}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{11}\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{\left(2^2\right)^4}{\left(2^3\right)^2}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{1}{2^2}.\dfrac{2^8}{2^6}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{2^8}{2^8}\right)^{2009}\)
\(B=1^{2010}-1^{2009}=1-1=0\)
câu 2
a) \(2x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2x=\dfrac{4}{3}+\dfrac{5}{4}\)
\(\Leftrightarrow2x=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{24}\)
b) \(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
Bài 1 :
Ta có :
\(a+c=2b\left(1\right)\)
\(2bd=c\left(b+d\right)\left(2\right)\)
Thay \(\left(1\right)\) vào \(\left(2\right)\) ta được :
\(\left(a+c\right)d=c\left(b+d\right)\)
\(\Leftrightarrow ad+cd=cb+cd\)
\(\Leftrightarrow ad=cb\)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\rightarrowđpcm\)
Bài 2 :
\(a,\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\)
\(=\dfrac{5^{21}\left(2.5-9\right)}{5^{20}}\)
\(=5\left(10-9\right)\)
\(=5\)
b, \(\dfrac{5\left(3.7^{15}-19.17^{14}\right)}{7^{14}+3.7^{15}}\)
\(=\dfrac{5.2.7^{14}}{10.7^{15}}\)
\(=\dfrac{1}{7}\)
\(\frac{2.5^{22}-9.5^{21}}{25^{10}}:\frac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=5:\frac{1}{7}=35\)
f, \(\dfrac{2^9.4^{10}}{8^8}=\dfrac{2^9.\left(2^2\right)^{10}}{\left(2^3\right)^8}=\dfrac{2^9.2^{20}}{2^{24}}=\dfrac{2^{29}}{2^{24}}=2^5=32\)
a: \(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{14}{25}+\dfrac{11}{25}+\dfrac{2}{7}=\dfrac{2}{7}\)
b: \(=\dfrac{3}{7}-\dfrac{5}{2}-\dfrac{3}{5}+\dfrac{4}{7}+\dfrac{3}{2}-\dfrac{2}{5}=1-1-1=-1\)
c: \(=\dfrac{4}{25}+\dfrac{7}{5}\cdot\dfrac{5}{2}-2=\dfrac{4}{25}+\dfrac{7}{2}-2=\dfrac{83}{50}\)
e)\(16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)+28\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)\)
=\(\left(16\dfrac{2}{7}+28\dfrac{2}{7}\right):\left(-\dfrac{3}{5}\right)\)
=\(\dfrac{312}{7}\)\(:\left(-\dfrac{3}{5}\right)\)
=\(-\dfrac{516}{7}\)
a)\(\dfrac{7}{8}.\left(\dfrac{2}{12}+\dfrac{4}{10}\right)\)
=\(\dfrac{7}{8}.\left(\dfrac{1}{6}+\dfrac{2}{5}\right)\)
=\(\dfrac{7}{8}.\)\(\dfrac{17}{30}\)
=\(\dfrac{119}{240}\)
\(\frac{2.5^{22}-9.5^{21}}{25^{10}}:\frac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
\(=\frac{5^{21}.\left(2.5-9\right)}{5^{20}}:\frac{5.7^{14}\left(3.7-19\right)}{7^{15}\left(7+3\right)}\)
\(=5:\frac{5.2}{7.10}\)
\(=5:\frac{1}{7}\)
\(=35\)
Câu 2:
\(B=\dfrac{5^{21}\cdot\left(2\cdot5-9\right)}{5^{20}}\cdot\dfrac{7^{15}\left(7+3\right)}{15\cdot7^{15}-95\cdot7^{14}}\)
\(=\dfrac{5\cdot1}{1}\cdot\dfrac{7^{15}\cdot10}{7^{14}\cdot\left(15\cdot7-95\right)}\)
\(=5\cdot\dfrac{7\cdot10}{105-95}=5\cdot7=35\)